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Abstra
t

The study of B-meson de
ays is an a
tive resear
h topi
s in elementary parti
le

physi
s, both in experiment and theory. By 
onfronting experimental and theoreti
al

results, several parameters of the standard model (SM )lagrangian 
an be determined,

in parti
ular the elements of the Cabibbo-Kobajashi-Maskawa (CKM) matrix.

An important 
lass of B-meson de
ays are the so-
alled rare da
ay, whi
h by de�-

nition are indu
ed in the SM only at the one-loop level. As su
h, they are parti
ularly

sensitive to physi
s beyond the SM.

The �rst four le
tures will be given by Christoph Greub. We will �rst brie�y review

the part of the SM whi
h is relevant for �avor physi
s. Then we will look at in
lusive

tree-level de
ays (in
luding QCD 
orre
tions). Then we will dis
uss the e�e
tive theory

formulation of B de
ays (e�e
tive Hamiltonian formalism, mat
hing, renormalization

group equations and all that). We will apply these te
hniques for rare in
lusive B-

de
ays.

Javier Virto will then give four le
tures on ex
lusive B-meson de
ays and their

appli
ation for the extra
tion of SM parameters and sear
hes for new physi
s. We

will start with a 
lassi�
ation of the di�erent pro
esses, and explain the te
hniques

ne
essary for the 
al
ulation of the amplitudes in ea
h 
ase, having in mind that we are

dealing with hadroni
 pro
esses, where non-perturbative e�e
ts are important. These

amplitudes will then be used in a few phenomenologi
al appli
ations, in
luding the

understanding of the 
urrent anomalies in b→ s ex
lusive transitions.
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1 Introdu
tion

We brie�y look at the experiments in whi
h b-quarks are produ
ed; we then look at the main

de
ay me
hanisms of b-quarks.

1.1 B Physi
s experiments

1.1.1 B-Mesons produ
ed in e+e− 
ollisions

e+e− → Υ(4s) −→
{
B0

d B̄
0
d ∼ 50%

B+B− ∼ 50%

}

Υ ≡ 
alled Upsilon

Υ(4s): (bb̄) resonan
e

e−

e+

γ

b

b̄

d̄

d

g

e−

e+

γ

b

b̄

ū

u

g

√
s = m(Υ(4s)) = (10.5800± 0.0035) GeV

mB0 = (5.2792± 0.0018) GeV

mB± = (5.2789± 0.0018) GeV

mBs = (5.3693± 0.002) GeV, Bs = (b̄s)

Therefore: Υ(4s)→ BsB̄s kinemati
ally not possible

⇒ The experiments using Υ(4s) work with a pure sample of B-mesons!
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Υ(4s) Experiments

ARGUS �

DESY

CLEO �

Cornell

BABAR �

SLAC

BELLE �

KEK

BELLE

upgrade

planed

stopped ∼
1992

∼1990-
2000

∼2000-2008 ∼2000-
2010

start 2018

(?)

eviden
e

that mt

is heavy

(through

BB̄ mix-

ing)

few×106BB̄
events;

many in-

teresting

results

few×109BB̄
events; many

results on CP-

violation; rare

de
ays

similar

perfor-

man
e as

BABAR

higher

luminosity,

fa
tor 50-

100 more

events

Also LEP (in parti
ular ALEPH) was involved in B-Physi
s. This was not an experiment at

Υ(4s) resonan
e, but a high energy experiment working at the Z0
pole.

e
−

e
+

Z
0

b

b̄

b and b̄ hadronize subse-

quently.

b̄→ B+ ∼ 40%

b̄→ B0 ∼ 40%

b̄→ B0
s ∼ 10%

b̄→ Λb ∼ 10%
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1.1.2 B-Mesons produ
ed in hadron 
ollisions

• LHCb = Large Hadron Collider beauty

Spe
ialized for studying de
ays of hadrons whi
h 
ontain a b-quark or a c-quark.

Produ
tion of b-quarks (or c-quarks) via the strong intera
tion (produ
tion in pairs)

u

ū

g

b, c

b̄, c̄

g
b, c

b̄, c̄
g

• TEVATRON � Fermilab is a pp̄ ma
hine

→ Produ
tion me
hanism of b- and c-quarks is the same.

B-mesons (b-quarks) always de
ay through weak intera
tions.

We therefore will �rst repeat the ele
tro-weak se
tor of the Standard Model (SM).

1.2 De
ay modes of b-quarks; terminology

• Charged 
urrent de
ay (Cabibbo-allowed)

b

W

�




��

e

; �qe

�

; q

V


b

� 0:044

In
lusive: B → Xcℓνℓ; Ex
lusive: B → D(∗)ℓνℓ et
.

This is a so-
alled tree-level de
ay. The b-quark de
ay indu
es the 
orresponding B-
meson de
ays.

• Charged 
urrent de
ay (Cabibbo-suppressed)
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b

W

�

u

��

e

; �qe

�

; q

V

ub

V

ub

= (0:06� 0:08)V


b

In
lusive: B → Xuℓνℓ, Ex
lusive: B → (π, ρ)ℓνℓ et
.

• Rare b-quark de
ays

Rare B de
ays, like b→ sγ or b→ sℓ+ℓ− are indu
ed at the one-loop level in the SM.

These pro
esses test the SM at the QT level; they are sensitive to 
ertain CKM matrix

elements.

A typi
al diagram is

b s

W




ii

V

ib

V

�

is

i = u; 
; t

These pro
esses are also very sensitive to extensions of the SM, (e.g. H±
, SUSY


ontrib., et
.):

H

�




ii

Terminology:

Ex
lusive rare B-meson de
ays: B → K∗γ, B → K(∗)µ+µ−
et
., i.e. the �nal hadroni
 state

(with strangeness) is a very spe
i�
 one.

In
lusive rare B-meson de
ays: B → Xsγ, B → Xsµ
+µ−

et
., i.e. Xs denote any hadroni


�nal state with strangeness.

The theoreti
al predi
ition for in
lusive de
ays is 
leaner, be
ause no des
ription of the

hadronzation of the produ
ed s-quark is needed.
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2 Standard Model brie�y summarized

2.1 Gauge group

GSM = SU(3)c × SU(2)L × U(1)Y

The group SU(3)c has 8 generators and therefore 8 real gauge bosons, the gluons GA
µ (A =

1, ..., 8).

The group SU(2)L has 3 generators and therefore 3 real gauge bosons, W i
µ (i = 1, 2, 3).

The group U(1)Y has 1 generator and therefore 1 real gauge boson, Bµ.

The �physi
al� gauge bosons W±
µ , Z

0
µ, Aµ are 
ertain linear 
ombinations of W i

µ and Bµ.

2.2 Fundamental fermions

(
uL
dL

) (
cL
sL

) (
tL
bL

)

uR cR tR
dR sR bR

Quarks

(
νeL
eL

) (
νµL

µL

) (
ντL
τL

)

eR µR τR
Leptons

The notation indi
ates that the left-handed �elds are doublets with respe
t to the group

SU(2)L, while the right-handed fermions are singlets under this group.

Taking into a

ount the 
olor degree of freedom, ea
h of the three generations 
ontains 15

Weyl-fermions (two 
omponent obje
ts):

15 = 4 · 3 + 3

5



2.3 Ele
tro-weak Intera
tion

GEW = SU(2)L × U(1)Y ele
troweak gauge group

The ele
tro-weak Lagrangian L 
an be de
omposed as

L = LG + LfG + Lφ + LYuk .

We now go through the various pie
es.

2.3.1 Part LG

LG = −1
4
W i

µνW
iµν − 1

4
BµνB

µν

W i
µν = ∂µW

i
ν − ∂νW i

µ − gǫijkW j
µW

k
ν , i = 1, 2, 3

Bµν = ∂µBν − ∂νBµ

2.3.2 Part LfG

LfG = Ψ̄iγµDµΨ

with

DµΨ = (∂µ + igT iW i
µ + ig′

Y

2
Bµ)Ψ 
ovariant derivative

Ψ means either a left-handed doublet or a right-handed singlet, as detailed in the following:

• Left-handed Doublet, e.g.

(
uL
dL

)

T i =
1

2
τ i (τ i: Pauli matri
es)

As the gauge group GEW is a dire
t produ
t, the SU(2) generators T i
have to 
ommute

with the U(1) generator Y :

[T i, Y ] = 0 .

As a 
onsequen
e, Y has the form

Y =

(
y 0
0 y

)

.

6



This means that uL, dL have the same hyper
harge y.

Fix the hyper
harges su
h that the ele
tri
 
harge Q is a linear 
ombination of T 3
and

Y :

Q = T 3 +
Y

2
=

1

2

(
1 0
0 −1

)

+
1

2

(
y 0
0 y

)

.

u :
2

3
=

1

2
+
y

2
→ y =

1

3

d : −1
3
= −1

2
+
y

2
→ y =

1

3

Analogously:

(
u
d

)

L, 1
3

(
c
s

)

L, 1
3

(
t
b

)

L, 1
3

(
νe
e

)

L,−1

(
νµ
µ

)

L,−1

(
ντ
τ

)

L,−1

Dµ

(
u
d

)

L

=

(

∂µ + ig
τ i

2
W i

µ + ig′
1

6
Bµ

)(
u
d

)

L

• Right-handed Singlet, e.g. uR

T iuR = 0 (↔ uR is a singlet w.r.t. SU(2))

Therefore, the hyper
harge assignments are

(uR) 4
3
, (cR) 4

3
, (tR) 4

3

(dR)− 2
3
, (sR)− 2

3
, (bR)− 2

3

(eR)−2, (µR)−2, (τR)−2

Dµ uR =

(

∂µ + ig′
2

3
Bµ

)

uR , et
.
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2.3.3 Part Lφ

Lφ = (Dµφ)
†(Dµφ)− V (φ)

where φ =

(
φ†

φ0

)

1

is the Higgs doublet (in the SM we only have one Higgs doublet). The

subs
ript denotes the hyper
harge quantum number.

Dµφ = (∂µ + ig
τ i

2
W i

µ + ig′
1

2
Bµ)φ

V (φ) = −µ2(φ†φ) + λ(φ†φ)2 Higgs potential

Lφ is invariant under SU(2)L × U(1)Y .

The potential has a minimum not for φ = 0, but e.g. for the 
onstant �eld 
on�guration

φ0 =

(
0
v√
2

)

; v =

√

µ2

λ

Unitary gauge: The Higgs doublet φ(x) =

(
φ†(x)
φ0(x)

)


an be written in the form

φ(x) = U−1(x)

(

0
H(x)√

2

)

,

where H(x) is a real �eld and U−1(x) is a (x-dependent) SU(2) matrix.

Now do the lo
al SU(2) gauge transformation asso
iated with U(x) everywhere in the La-

grangian: The form of the Lagrangian stays the same, ex
ept that φ has the form

φ(x) =

(

0
H(x)√

2

)

. (2.1)

We say, that we are in the unitary gauge, after doing this gauge transformation.

The 
on�guration whi
h realizes the minimum of the Higgs potential is then

φ0 =

(
0
v√
2

)

.
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In other words, H(x) has a va

um expe
tation value, v. We therefore 
an write H(x) =
v + η(x), where η(x) has zero va
uum expe
tation value. η(x) is the physi
al Higgs �eld.

To summarize: The Higgs doublet in the unitary gauge has the form

φ(x) =

(

0
v+η(x)√

2

)

.

2.3.4 Part LYuk

LYuk = heij l̄L
i
φ ejR + hdij q̄

i
L φ d

j
R + huij q̄

i
L φ̃ u

j
R + h.c. (2.2)

• qiL left-handed quark doublet of ith generation

• liL left-handed lepton doublet of ith generation

• φ̃ := iτ 2φ∗; he, hd, hu : arbitrary 3×3 matri
es 
alled Yukawa 
ouplings

• φ̃ transforms in the same way under SU(2)L as φ
→ Exer
ise!

SU(2)L : Invarian
e of LYuk is then obvious

U(1)Y : Invarian
e of LYuk is again easy to see

l̄L φ eR q̄L φ dR q̄L φ̃ uR
1 + 1− 2 = 0 −1

3
+ 1− 2

3
= 0 −1

3
− 1 + 4

3
= 0

2.3.5 Masses of gauge bosons (W,Z-bosons)

(Dµφ)(D
µφ) in Lφ 
ontains terms of the form: v · v · Boson · Boson. These bilinear terms

(in the boson �elds) are the Boson mass terms.

Result for boson masses:

L
Boson mass

= m2
WW

+
µ W

µ− +
1

2
m2

ZZµZ
µ + 0 · AµA

µ

︸ ︷︷ ︸

Photon massles

(2.3)

W±
µ =

(
W 1

µ ∓ iW 2
µ

)
/
√
2 (2.4)

(
Zµ

Aµ

)

=

(
cos θW − sin θW
sin θW cos θW

)(
W 3

µ

Bµ

)

(2.5)
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When doing this 
al
ulation, one �nds that

m2
W =

g2v2

4
, m2

Z =
v2(g2 + g′2)

4
, tan θW =

g′

g
.

⇒ m2
Z =

v2g2

4

(
1 + tan2 θW

)
=

v2g2

4 cos2 θW
=

m2
W

cos2 θW

mW = (80.41± 0.10)GeV ; mZ = (91.187± 0.007)GeV

2.3.6 LfG expressed in terms of W±
µ , Z

0
µ, Aµ

Start with LfG = ψ̄iγµDµψ and express the original gauge bosons W i
µ and Bµ in terms of

the mass eigenstate bosons W±
µ , Zµ and Aµ. Then write the result in the form

LfG = LCC + LNC + Lkin

CC: 
harged 
urrent intera
tions; NC: neutral 
urrent intera
tions

One gets

LCC = − g√
2

[
ēLγµνLW

µ− + d̄LγµuLW
µ− + h.c.

]
+ 
opy for 2. and 3. generation.

LNC = −eJem
µ Aµ +

g

cos θW
J0
µZ

µ ; e = g sin θW

Jem
µ = Qeēγµe +Quūγµu+ Qdd̄γµd+ 
opy for 2. and 3. generation.

J0
µ = −

∑

f

(

gfLf̄LγµfL + gfRf̄RγµfR

)

+ 
opy for 2. and 3. generation. .

f runs over νe, e, u and d. The 
ouplings gfL,R read gfL,R = T 3(fL,R) − Q(f) sin2 θW , whi
h


on
retly means

gνL =
1

2
; gνR = 0

geL = −1
2
+ sin2 θW ; geR = sin2 θW

guL =
1

2
− 2

3
sin2 θW ; guR = −2

3
sin2 θW

gdL = −1
2
+

1

3
sin2 θW ; gdR =

1

3
sin2 θW

10



2.3.7 Fermion-Mass terms and the CKM Matrix

Start with LYuk. Repla
e there φ→ φ0 =

(
0
v√
2

)

, getting

Lfermion
mass = ēiLM

e
ije

j
R + d̄iLM

d
ijd

j
R + ūiLM

u
iju

j
R + h.c.

with

Me
ij =

v√
2
heij et
..

For the following it is 
onvenient to introdu
e the matrix notations

EL =





eL
µL

τL



 , ER =





eR
µR

τR



 , DL =





dL
sL
bL




et
..

leading to

Lfermion
mass = ĒLM

eER + D̄LM
dDR + ŪLM

uUR + h.
..

The mass matri
es Me
, Md

, Mu
are arbitrary 
omplex 3× 3 matri
es.

Theorem: Let M be an arbitrary 3× 3 matrix. It 
an always be written in the form

M = V1DV
†
2 ,

where V1, V2 ∈ U(3) and D diagonal (with non-negative entries).

Therefore we 
an write

Lfermion
mass = ĒLV

E
L

︸ ︷︷ ︸

Ē′
L

De V E†
R ER
︸ ︷︷ ︸

E′
R

+...

De
is the diagonal mass matrix for the 
harged leptons. EL, ER and E ′

L, E
′
R are 
alled the

weak- and the mass eigenstates, respe
tively. We have the relations

EL = V E
L E

′
L , ER = V E

R E
′
R

UL = V U
L U

′
L , UR = V U

R U
′
R

DL = V D
L D

′
L , DR = V D

R D
′
R

Look at 
harged 
urrent Lagrangian LCC :

LCC = − g√
2

[
ĒLγµNLW

µ− + D̄LγµULW
µ− + h.c.

]

11



LCC = − g√
2

[

Ē ′
LγµV

E†
L NLW

µ− + D̄′
LγµV

D†
L V U

L U
′
LW

µ− + h.c.
]

As we have no neutrino mass term, we 
an put NL = V E
L N

′
L, leading to

LCC = − g√
2



Ē ′
LγµN

′
LW

µ− + D̄′
Lγµ V

D†
L V U

L
︸ ︷︷ ︸

=̇V †

U ′
LW

µ− + h.c.





whi
h implies that V = V U†
L V D

L .

V = V U†
L V D

L : Cabibbo-Kobayashi-Maskawa

matrix (CKM-Matrix)

3× 3 unitary

We get the following verti
es:

νe

W+

e−

νµ

W+

µ−

u

W+

d

V ∗ud u

W+

b

V ∗ub

We now turn to the neutral 
urrent intera
tions. It is easy to see that the matri
es from


hange of basis drop out in LNC .

This implies that there are no FCNC
︸ ︷︷ ︸

�avour 
hanging

neutral 
urrents

in the Standard Model at tree level!

For example, for the ele
tromagneti
 
urrent of the 
harged leptons we get

Jem
µ = QeĒLγµEL +QeĒRγµER

= QeĒ
′
LγµV

E†
L V E

L E
′
L +QeĒ

′
RγµV

E†
R V E

R E
′
R

= QeĒ
′
LγµE

′
L +QeĒ

′
RγµE

′
R . (2.6)

12



2.3.8 Parameters in CKM Matrix V

V ∈ U(N) ; N : number of generations (N = 3 in reality)

• V has N2
parameters (real way of 
ounting)

• If Vij was real (∀i,j), then V ∈ O(N). O(N) has N(N−1)
2

parameters

• U(N) 
an be parametrized by �rst parametrizing O(N); then one puts in phase fa
tors

at appropriate pla
es → N2 − N(N−1)
2

phase fa
tors

Example: N = 2←→ U(2)

O =

(
cosα sinα
− sinα cosα

)

∈ O(2)

U =

(
cosα eiφ1 sinα eiφ2

− sinα eiφ3 cosα eiφ4

)

Ansatz

Condition that U ∈ U(2): φ1 − φ2 = φ3 − φ4 (+nπ)

From this equation we see that 3 phases are independent. This agrees with the general

formula: 22 − 2·1
2
.

• But not all of these phases are physi
al! (As we will see when looking at the quark

mass terms.)

• Mass term for quarks:

Ū ′
LM

UU ′
R + D̄′

LM
DD′

R + h.c.

MU ,Md
diagonal, ≥ 0. MU

andMd
stay invariant, if one rede�nes the �elds a

ording

to

U ′
L = PuU

′′
L , U ′

R = PuU
′′
R , D′

L = PdD
′′
L , D′

R = PdD
′′
R ,

provided that Pd and Pu are diagonal �phase matri
es�:

Pd =






eiα1 0
.

.

.

0 eiαN




 , Pu =






eiβ1 0
.

.

.

0 eiβN






• In the new basis the 
harged 
urrent JCC
µ reads:

JCC
µ = − g√

2
D̄′′

LγµP
†
dV

†PuU
′′
L

13



i.e.Vij → (P †
uV Pd)ij = Vije

−i(βi−αj)

One 
an 
hoose αi and βi su
h that the largest possible amount of phases in V gets

removed.

N = 2:

Can 
hoose β1 − α1, β1 − α2, β2 − α1

β2 − α2 = (β1 − α2)− (β1 − α1) + (β2 − α1) is then given.

→ Can eliminate 3 phases. Therefore, in the 
ase N = 2 all three phases 
an be rotated
away. No physi
al phases are remaining!

⇒ no CP -violation is possible in N = 2.

N general: 2N − 1 
an be transformed away.

Number of physi
al phases = N2 − N(N − 1)

2
− (2N − 1) =

(N − 1)(N − 2)

2
.

N = 3: One physi
al phase in the CKM matrix V . This phase is the sour
e for CP -
violation in the SM.

• Satement: Assume we have 
al
ulated the amplitude A for a spe
i�
 de
ay pro
ess.

The amplitude Ā for the 
orresponding CP-
onjugated pro
ess is then obtained by


omplex 
onjugating the CKM elements in A.

Unitarity triangles

V =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 ∈ U(3) ; CKM matrix

Unitarity relation between 1. and 3. 
olumn:

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0

Representation of this relation in the 
omplex plane: triangle

V ∗tbVtd

V ∗cbVcd

V ∗ubVud

(0, 0)

Phase transformations Pu, Pd ro-

tate the triangle as a whole. The

area stays invariant.

Exer
ise: Show this!

14



Area J :
~a = (Re(V ∗

ubVud); Im(V ∗
ubVud); 0)

~b = (Re(V ∗
cbVcd); Im(V ∗

cbVcd); 0)

2J = |~a×~b| = |Im(VubV
∗
udV

∗
cbVcd)|

Exer
ise: Show the �nal expression. Show that it is invariant under phase transformations.

There are 5 additional unitarity triangles. E.g. the one obtained from 2. and 3. 
olumn.

V ∗
ubVus + V ∗

cbVcs + V ∗
tbVts = 0

Area: 2 J ′ = |Im(VubV
∗
usV

∗
cbVcs)|

We just will show that J ′ = J :

Reason:

Im(VubV
∗
udV

∗
cbVcd) +

Im(VubV
∗
usV

∗
cbVcs) +

Im(VubV
∗
ubV

∗
cbVcb

︸ ︷︷ ︸
real

) = 0

Analogously one 
an show that all 6 triangles have the same area J : This is a measure of

CP-violation.

All triangles, ex
ept the one formed with 1. and 3. 
olumn are strongly degenerate (to a

line). The most important one is therefore the one from the 1. and 3. 
olumn.

2.3.9 Parametrizations of the CKM Matrix V

Standard parametrization of PDG:

V =





c12c13 s12c13 s13e
−iδ

−s12c23 − s23c12s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 ,

where sij = sin(θij) and cij = cos(θij). This matrix is exa
tly unitary.

It turn out that the sij are relatively small numbers.

⇒ cij near 1; all θij 
an be 
hosen in the �rst quadrant.

Hierar
hy: s13 ≪ s23 ≪ s12 ≪ 1

15



A useful parametrization, where one 
an immediately see the sizes of the various Vij-elements,

is the Wolfenstein-parametrization:

Insert

s12 = λ, s23 = Aλ2, s13e
iδ = Aλ3(ρ+ iη)

into the standard parametrization. By 
onstru
tion, V is still exa
tly unitary when expressed

in terms of A, λ , ρ and η.

Now expand in the small parameter λ (λ ≈ 0.2), obtaining

VWolfenstein =





1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



 +O(λ4)

Consider again the unitarity triangle (1. + 3. 
olumn).

Devide the relation

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0

by V ∗
cbVcd:

⇒ V ∗
ubVud
V ∗
cbVcd
︸ ︷︷ ︸

3

+
V ∗
cbVcd
V ∗
cbVcd
︸ ︷︷ ︸

1

+
V ∗
tbVtd
V ∗
cbVcd
︸ ︷︷ ︸

2

= 0 .

Doing this in the Wolfenstein paramatrization, we get (negle
ting the O(λ4) terms)

Aλ3(ρ+ iη)

−Aλ3 + 1 +
Aλ3(1− ρ− iη)

−Aλ3 ≈ 0

−(ρ+ iη) + 1− (1− ρ− iη) ≈ 0

2

1

3

(0, 0) (1, 0)

(ρ, η)

The tip of the triangle has 
oor-

dinates (ρ,η) (approximate state-

ment.)

Modi�ed Wolfenstein: Insert

s12 = λ ; s23 = Aλ2 ; s13e
iδ =

Aλ3(ρ̄+ iη̄)
√
1−A2λ4)√

1− λ2 [1− A2λ4(ρ̄+ iη̄)]
.

into the standard parametrization.
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Exer
ise: Show that this implies that

ρ̄+ iη̄ =
−(VudV ∗

ub)

VcdV ∗
cb

whi
h is phase-
onvention independent. See PDG!

In the modi�ed version we have

2

1

3

(0, 0) (1, 0)

(ρ̄, η̄)

α
γ β

Tip has 
oordinates (ρ̄, η̄) (exa
t
statement!)

A large amount of data shows that the CKM pi
ture is realized in nature. Today the �ts for

A, λ, ρ̄ and η̄ are:

PDG 2012 λ = 0.22535± 0.00065, A = 0.811+0.022
−0.012

ρ̄ = 0.131+0.026
−0.013, η̄ = 0.345+0.013

−0.014

• Measuring de
ay rates leads often to 
onstraints on the modulus of spe
i�
 CKM

elements: |Vij|

• Measuring CP asymmetries often gives dire
t info on the angles α, β and γ of the

unitary triangle.

Strategy: Key-word: �Over
onstraining the unitarity triangle�. This means: Measure more

than ne
essary and look if everything is 
onsistent.

2.3.10 Measuring some of the CKM elements

(rather detailed in PDG12; here only brief)

• |Vud| = 0.97425± 0.00022 from nu
lear β-de
ay

• Semileptoni
 K-de
ays, Hyperon-de
ays

ν̄e

e

s

W−

u

Vus |Vus| = 0.22525± 0.0009

17



• Charm produ
tion in ν nu
leon s
attering

νe

d
W−

e−

cVcd

and semileptoni
 D de
ays (D mesons 
ontain a 
harm quark):

νe

e+

c

W+

d

Vcd

|Vcd| = 0.230± 0.011

• Semileptoni
 D de
ays:

νe

e+

c

W+

s

Vcs
|Vcs| = 1.006± 0.023

• Semileptoni
 B de
ays (ex
lusive and in
lusive)

ν̄e

e

b

W−

c

Vcb

ν̄e

e

b

W−

u

Vub

|Vcb| = (40.9± 1.1) · 10−3 ; |Vub| = (4.15± 0.49) · 10−3

Note that |Vub| ∼ 0.1 |Vcb|!

18



In
lusive: only the endpoint spe
trum of e− 
an be used for the determination of Vub.

b→ ceν is mu
h larger.

Only the energy window above

the kinemati
al endpoint from

b → ceν 
an be used for the de-

termination of Vub.

Ex
lusive: B → Deν, B → D∗eν for Vcb and B → ρeν, B → ωeν for Vub.

• t −→ bW and single top produ
tion at Fermilab

average: |Vtb| = 0.89± 0.07

So far, we did not dis
uss |Vtd| and |Vts|. It is very di�
ult to extra
t them from semileptoni


top-de
ays.

• Vts e.g. using CKM unitarity relations and making use of |Vcs| ≈ |Vtb| ≈ 1. This is of

ourse not a measurement, but it is interesting nevertheless:

VusV
∗
ub

︸ ︷︷ ︸

small w.r.t.

2nd
term

+VcsV
∗
cb + VtsV

∗
tb = 0

|VcsV ∗
cb| ∼= |VtsV ∗

tb| ⇒ |Vts| ≈ |Vcb| = (40.9± 1.1) · 10−3

Dire
t: b −→ sγ

b

W

s

γ

t t

→ |Vts| = (37± 7) · 10−3
(one of my papers, but not updated.)

19



Result in agreement with the determination using unitarity relations, but

CAUTION: The pro
ess b→ sγ is sensitive to new physi
s! Value given assumes that

there is no new physi
s 
ontribution.

• Vts also from Bs − B̄s mixing (see dis
ussion in the next point).

Taking all information on |Vts| together, the PDG gives

|Vts| = (42.9± 2.6) · 10−3 .

• Vtd B̄0 − B0
mixing: B0

and B̄0
are not eigenstates of HSM (w.r.t. HQCD they are)

B̄0
and B0


an mix (os
illate) into ea
h other. This mixing is indu
ed through se
ond

order weak intera
tion.

b t dVtd

W W

d̄ t̄ b̄

B0B̄0
(B0

,B̄0
) mixing diagram

B0
1 , B

0
2 : States (with exponential de
ay law) whi
h diagonalize the mass matrix

∆m = mB0
1
−mB0

2
(dominated by the diagram above) is sensitive on |Vtd|!

In analogy: B̄0
s − B0

s mixing is sensitive on |Vts|.

|Vtd| in the future probably also from b −→ dγ

b

W

d

γ

t t

V ∗td

|Vtd|PDG12 = (8.4± 0.6) · 10−3
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3 In
lusive semileptoni
 B-de
ays

3.1 General 
omments on in
lusive de
ays

The de
ay width for in
lusive B-meson de
ays (like B → Xsγ) 
an be written in the following
way:

Γ[B → Xsγ] = Γ[b→ sγ(g)] + 
orr. in ΛQCD/mb .

- no linear 
orre
tions in ΛQCD/mb

- Corr. start at O(Λ2
QCD/m

2
b); they are related to the motion of the b-quark inside the

meson; their numeri
al e�e
t is of order 4% at the level of the de
ay width. Perhaps

Javier will dis
uss this.

- We 
on
entrate on the partoni
 pie
e, in
luding perturbative QCD 
orre
tions.

Well-known: Often, the de
ay rate is signi�
antly enhan
ed by QCD-e�e
ts.

There are large logs of the form (n gluons ex
hanged)

γ

W

b s

g

t

(αs

π

)n

logn
m2

b

M2
M = mt, mW : leading logs (LL)

(αs

π

)n

logn−1 m
2
b

M2
next-to-leading logs (NLL)

To get a reasonable result, one has to resum at least the LL and NLL terms.

Useful ma
hinery to a
hieve this resummation: Constru
t an e�e
tive Hamiltonian and

resum logs using renormalization group equation (RGE) te
hniques. This is what we want

to learn in the �rst part of this 
ourse.

The most reliably 
al
ulable B-de
ays are the so-
alled in
lusive semileptoni
 de
ays:

b −→ c e ν̄ ; b −→ u e ν̄ .

In this 
ase, there are no large logs; 
onsequently, they 
an be 
al
ulated in �xed order

perturbation theory.

We �rst give the lowest order results and then dis
uss the e�e
ts of virtual- and bremsstrahlung

QCD 
orre
tions at order α1
s.
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3.2 Γ(b→ c e ν) and Γ(b→ u e ν) at lowest order

ν̄e

e

b

W−

c

Vcb lowest order diagram

Verti
es:

b c

W

− ig√
2
VcbγµL

e− νe

W

− ig√
2
γµL

L ≡ 1− γ5
2

Propagator:

Wµ ν

k
1

i

(

gµν −
kµkν
m2

W

)
1

k2 −m2
W

(in unitary gauge)

In
oming/Outgoing fermions:

b

c

e

ν̄

u(pb)

ū(pc)

ū(pe)

v(pν)

Dira
 equation:

/p u(p) = mu(p)

/p v(p) = −mv(p)

S = 1 + iT ; de
omposition of the s
attering matrix

The de
ay amplitude M then reads

M = 〈c e− ν̄|T |b〉 = (2π)4 δ4(pb − pc − pe − pν) ū(pc)γµLu(pb) ū(pe)γνLv(pν)×
(

gµν − kµkν

m2
W

)
1

k2 −m2
W

(

− ig√
2

)2
1

i
Vcb
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• ν̄e

e

b

W−

c

Vcb

k = O(mb)

→ 1

k2 −m2
W

≈ − 1

m2
W

This is what makes the weak intera
tion weak in low energy pro
esses, not the weak


oupling g (g = O(e)!).

• Term ∼ kµkν

m2
W

in the propagator: Can also be negle
ted.

• We put me = 0 in the following, obtaining

M = (2π)4δ4(pb − pc − pe − pν) t

t = ū(pc)γµLu(pb)ū(pe)γ
µLv(pν)

(

− ig2

2m2
W

Vcb

)

t is sometimes 
alled the �redu
ed matrix element�.

t = ū(pc)γµLu(pb)ū(pe)γ
µLv(pν)

(−ig2
2m2

W

Vcb

)

︸ ︷︷ ︸

≡V

De
ay rate:

dΓ =
1

2mb
|t|2Σ(2π)4δ4(pp − pc − pe − pν)dµ(pc)dµ(pe)dµ(pν) (3.1)

dµ(p) ≡ d3p

(2π)32p0
, p0 =

√

m2 + ~p2

Exer
ise:

dµ(p) =
d4p

(2π)3
δ(p2 −m2)θ(p0)

|t|2Σ: The index Σ means to sum over spins, 
olours in �nal state and to average over spins,


olours in initial state.

After some pages of 
al
ulation one arrives at

dΓ

dq2
=

64G2
F

192π2
|Vcb|2

[
2(pbq)(pcq) + q2pbpc

]

[

(m2
b − (mc +

√

q2)2)(m2
b − (mc −

√

q2)2)
]1/2

16πm3
b

.
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This is 
alled the �Distribution of the invariant mass squared of the lepton pair (q2 =
(pe+pν)

2
)�. q2 varies in the range 0 ≤ q2 ≤ (mb−m2

c). The s
alar produ
ts in this epression

are understood to be

pbpc =
m2

b +m2
c − q2

2
; pbq =

m2
b −m2

c + q2

2
; pcq =

m2
b −m2

c − q2
2

.

To get the (total) de
ay width, we have to integrate over q2, obtaining

Γ =
G2

Fm
5
b |Vcb|2

192π3
g

(
mc

mb

)

; (b→ ceν̄e)

g(z) = 1− 8z2 + 8z6 − z8 − 24z4 ln z

g(z) is 
alled �phase-spa
e fun
tion�.

Γ shows strong dependen
e on mb: m
5
b ! An un
ertainty in mb has a strong in�uen
e on Γ!

Many other B-de
ays also involve m5
b , e.g. Γ(b→ sγ).

One therefore often normalizes with the semileptoni
 expression, e.g.:

BR(b→ sγ) =

(
Γ(b→ sγ)

Γ(b→ ceν̄e)

)

th

(
Γ(b→ ceν̄e)

Γtot

)

exp.
︸ ︷︷ ︸

(10.49±0.46)%

Phase-spa
e fun
tion:

mc

mb
= 0.29± 0.02 −→ g

(
mc

mb

)

≈ 0.54

It would be a bad approximation to negle
t mc with respe
t to mb!

b→ ueν̄e :

There one 
an safely put mu = 0 and gets

Γb→ueν̄e =
G2

Fm
5
b |Vub|2

192π3
.
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3.3 QCD Corre
tions to b→ c e ν̄e, b→ u e ν̄e

There are so-
alled virtual gluon 
orre
tions and gluon Bremsstrahlung 
orre
tions whi
h

have to be 
ombined. I do not present the 
al
ulations whi
h in prin
iple would be quite

interesting, be
ause they involve UV renormalization and also how to deal properly with

infrared singularities. Please ask me for my le
ture notes of a more detailed 
ourse when

you are interested in the details of these 
al
ulations.

3.3.1 Virtual gluon 
orre
tions

The bare diagrams are:

b

g = gluon

W−

c

e−

ν̄e

(a)

b

W−

c

e−

ν̄e

(b)

g

b W−

c

e−

ν̄e

(c)

g

The UV-renormalized 
ontribution to the de
ays width su�ers from infrared singularities.

3.3.2 Bremsstrahlung pro
ess b→ ceν + g

The 
ontributing diagrams are:

b

pb

pb − k
k

W−

pc

c

ν̄e

e−

(a)

pb

W−

pc

ν̄e

e−

(b)

+

k

pc + k

�Only� tree-graphs, but the four parti
les in the �nal state lead to rather 
ompli
ated phase-

spa
e integrals. → Not a trivial problem at all!

25



Also this 
ontribution to the de
ay width su�ers from infrared singularites.

When 
ombining virtual- and Bremsstrahlung 
orre
tions, these singulaties 
an
el, leading

to a physi
al result.

3.3.3 Semipleptoni
 de
ay width in O(αs) QCD

For the exa
t result see e.g. in Y.Nir, PLB221(1989)84. A good approximation the semilep-

toni
 de
ay to order αs in QCD reads

Γ(b→ c e−ν̄ + c e−ν̄g) =
G2

Fm
5
b |Vcb|2

192π3
g

(
mc

mb

)[

1− 2αs

3π
f

(
mc

mb

)]

,

where the fun
tions g and f read

g(u) = 1− 8u2 + 8u6 − u8 − 24u4 ln u; αs ≡
g2s
4π

,

f(u) =

(

π2 − 31

4

)

(1− u)2 + 3

2
.

mb and mc are understood to be pole-masses; this is important to spe
ify, be
ause otherwise

the expli
it expression for f would be di�erent.

Numeri
ally we have:

mc

mb
≈ 0.3; αs ≈ 0.2;

[

1− 2αs

3π
f

(
mc

mb

)]

≈ 0.89 .

→ QCD 
orre
tions redu
e the semileptoni
 de
ay width by about ≈ 11%.
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4 E�e
tive Hamiltonian for b→ c ū d

B-meson de
ays are indu
ed through the weak intera
tion. In the theoreti
al des
ription

(in the SM) W - and Z-propagators o

ur; also the top-quark 
an 
ontribute in loops. The

de
ay amplitudes therefore depend on mass-s
ales whi
h are very di�erent: On one hand on

mb and on the other hand on mW , mt, mZ . It is possible to 
onstru
t an equivalent theory in

whi
h only the �light� �elds are present: b, c, s, d, u; τ , µ, e, νe, νµ, ντ ; γ, g. We 
onsider in

the following the de
ay b→ c ū d for whi
h we 
an expli
itly illustrate the essential features

of the 
onstru
tion of the e�e
tive theory.

4.1 Tree-level

b

c

W

ū

d

k

A =

(

− ig√
2

)2

(d̄γµLu)
1

i

gµν − kµkν

m2
W

k2 −m2
W

(c̄γνL b)VcbV
∗
ud

k = O(mb)≪ mW ⇒ 
an expand the propagator in the momentum transfer k.

gµν − kµkν

m2
W

k2 −m2
W

= − g
µν

m2
W

+O
(
k2

m4
W

)

The amplitude 
an then be written as

A =
1

i

g2

2

[
1

m2
W

(d̄γµLu)(c̄γ
µLb)] +

1

m4
W

(dim 8 Operators) +
1

m6
W

(dim 10 Operators) + ...

]

VcbV
∗
ud

The dimension 8, 10, ... operators 
ontain the same �elds as the dimension 6 operator. In

momentum spa
e they 
ontain powers of k, i.e., powers of external momenta. In position

spa
e these momenta 
orrespond to derivatives. All these operators are lo
al operators.
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y

x

non-local

Operator product-
expansion
(OPE)

x

local

The amplitude is dominated by the operator(s) of lowest dimension. Higher-dimensional op-

erators are suppressed by inverse powers of mW . We only will need the 
ontribution(s) of the

leading operator(s), i.e., with lowest dimension. From the amplitude A we 
an immediately

read o� the e�e
tive Hamiltonian.

Hdim 6

e�

=
g2

2
VcbV

∗
ud

1

m2
W

︸ ︷︷ ︸

prefa
tor

(d̄γµLu)(c̄γ
µL b)

︸ ︷︷ ︸
operator

The prefa
tor is determined in su
h a way that

〈cūd| − iH
e�

|b〉 = A .

g2 is often written in terms of GF ; the 
onne
tion is

g2 = 4
√
2GFm

2
W ← de�nes GF .

Hdim 6

e�

=
4GF√

2
VcbV

∗
udC2O2

O2 = (d̄γµLu)(c̄γ
µL b) ← is simply 
alled O2 in literature

C2 = 1 ←Wilson 
oe�
ient

Remark: We �
ontra
ted-out� theW -�eld in the sense of the Wi
k-theorem. We then expand

the 
orresponding propagator. The analogous thing in the path-integral formalism would

be: Integrate over the W -�eld. After this step a non-lo
al a
tion results. The subsequent

OPE then leads to the same lo
al H
e�

. See Buras hep-ph/9806471, p.53.

Remark: We will see that the Wilson 
oe�
ient C2 = 1 gets modi�ed by QCD e�e
ts.

4.2 QCD-e�e
ts; prin
iple 
omments

We now want to 
onsider QCD 
orre
tions of order αs = g2s
4π
. Is it still possible to expand

the W -propagator?
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• no problem in the diagrams

b

c

W

ū

d

g

b

c

W

ū

d

g

b
c

W

ū

d

g

• not so 
lear in the diagrams as e.g.

b

c

W

ū

d

g

Depending on the value of the loop-momentum, large or small momenta �ow through the

W -line: Split loop-momentum into two regions:

(I) 0 < |lα| < Λ

(II) Λ < |lα| <∞
Choose Λ su
h that mb ≪ Λ≪ mW .

Region (I): Can expand the propagator; we only keep the leading term in 1/m2
W . The


al
ulation then boils down to working out the following diagram:

gO2 |lα| < Λ

Region (II): External momenta are small 
ompared to themW -mass and the loop-momentum.

One therefore 
an expand in the external momenta. Leading term 
orresponds to pi=0.
Higher powers in pi are suppressed by ( pi

mW
)2 ↔ higher-dimensional operators. Therefore we


an simply put pi = 0 in this region.
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→ The momentum dependen
e of the de
ay amplitude 
omes from region (I), i.e., from the

diagram shown there.

→ Non-trivialmW -dependen
e, whi
h is not of the form 1/mn
W , 
omes from region (II). This

one manifests itself in terms of the form ln mW

Λ
as we will see.

The result of the QCD 
orre
ted de
ay amplitude b→ cūd 
an be written as

A = 〈cūd| − iHdim 6

e�

|b〉

Hdim 6

e�

=
4GF√

2
VcbV

∗
ud[C1(Λ)O1(Λ) + C2(Λ)O2(Λ)]

O1 = (d̄αγµLuβ)(c̄βγ
µL bα) α, β : 
olour indi
es

O2 = (d̄αγµLuα)(c̄βγ
µL bβ)

O1(Λ), O2(Λ) means that one 
uts o� the loop momentum at Λ when 
al
ulating their

matrix-elements. The matrix-elements 〈cūd|O1(Λ)|b〉 and 〈cūd|O2(Λ)|b〉 
ompletely 
ontain

the physi
s of the small momenta, in parti
ular the dependen
e on the external momenta.

The Wilson 
oe�
ients 
ontain the dependen
e of the masses of the heavy parti
les whi
h

are integrated out (here: the W -boson).

A ∼ C2(Λ)
︸ ︷︷ ︸

(C0
2+C1

2αs)

〈O2(Λ)〉
︸ ︷︷ ︸

(M0
2+M1

2αs)+

+ C1(Λ)
︸ ︷︷ ︸

(C0
1+C1

1αs)

〈O1(Λ)〉
︸ ︷︷ ︸

(M0
1+M1

1αs)+O(α2
s)

In pra
ti
e one �xes the Wilson-
oe�
ients in su
h a way that one 
al
ulates the de
ay

matrix element (or the 
orresponding Greens-fun
tion) in both, in the full theory and in the

e�e
tive theory. In the full theory one integrates over all loop-momenta. In the e�e
tive

theory only over those with |lα| < Λ.

The Wilson 
oe�
ients 
an then be �xed by requiring that the results are the same. This

��xing� is 
alled mat
hing.

Suppose we only want to �x the Wilson 
oe�
ients, i.e., we are interested in the mat
hing


al
ulation only. As the Wilson 
oe�
ients do not depend on the external momenta, the

mat
hing 
al
ulation 
an be done for a suitable 
on�guration of external momenta, for whi
h

the 
al
ulation be
omes as simple as possible.

Remark: The expli
it 
utting-o� of loop-momenta is 
onvenient to understand the prin
iple.

Te
hni
ally, however, this pro
edure is very 
umbersome. Instead one 
an integrate in the

e�e
tive theory over all loop-momenta (just using the dimensionally regularized version).

The dependen
e on the external momenta is the same. The di�eren
e is in momentum-

independent terms. This means the that Wilson 
oe�
ients Cdim. reg

i and Ci(Λ) di�er by
those terms. But the produ
t Ci〈Oi〉 is the same in both s
hemes.
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→ The produ
t Ci〈Oi〉 is the physi
al obje
t, not Ci and 〈Oi〉 individually.

Remark: In dimensional regularization the �renormalization s
ale� µ (or µ̄ = µ eγE/2/
√
4π)

o

urs. It turns out that the logarithmi
 dependen
e on µ in the dimensional result is the

same as the Λ-dependen
e in the 
ut-o� pro
edure. One therefore 
an say that µ also serves

as the separation s
ale between large and small loop momenta.

Exer
ise:

I1
.
= µ̄2ǫ

∫
ddlE
(2π)d

1

[~l2E + C]2

I2
.
=

∫

| ~lE |<Λ

d4lE
(2π)4

1

[~l2E + C]2

Show that the 
oe�
ient of ln Λ in I2 and the 
oe�
ient of ln µ̄ in I1 
oin
ide.

In the following 
hapter we will expli
itly do the mat
hing 
al
ulation, i.e. the extra
tion of

the Wilson-
oe�
ients C1(µ), C2(µ) at order αs = g2s/4π in QCD.

4.3 Mat
hing of H
e�

for b→ cūd at O(αs)

H
e�

=
4GF√

2
VcbV

∗
ud[C1(µ)O1(µ) + C2(µ)O2(µ)] ,

O1 = (d̄αγµLuβ)(c̄βγ
µL bα) , O2 = (d̄αγµLuα)(c̄βγ

µL bβ) ,

C1(µ) = 0+?αs , C2(µ) = 1+?αs .

a) Full theory

u g
d

W

b c

(a)

g
W

(b)

g

(c)
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(d) (e)

(f)

As the Wilson 
oe�
ients only depend on the masses of the heavy parti
les (and µ), we

hoose the quark masses to be zero and the external momenta identi
al (all = p), with
p2 < 0. Disadvantage: One looses of 
ourse the expli
it 
he
k that the Wilson 
oe�
ients

indeed only depend on the heavy masses.

Why don't we 
hoose p = 0? Just to avoid 
ollinear and infrared divergen
es! We only will

keep p2 as a regulator of su
h singularities. In terms where p2 does not serve as a regulator,

we will put p2 = 0.

Remark: A
tually, we should take into a

ount self-energy diagrams in addition, together

with their 
ounterterms.

e.g

g

+ +

These self-energiy 
ontributions appear exa
tly in the same way when we will 
al
ulate

the matrix elements of the operators in the e�e
tive theory. Therefore they will give no


ontributions to the Wilson-
oe�
ients. We therefore 
an omit them (of 
ourse in the full

and in the e�e
tive theory).

Remark: The 
ounter-terms to the vertex 
orre
tions we do take into a

ount:
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+

(g)

(h)

At the 
ross in the vertex

we have the renormaliza-

tion fa
tor (Z̄1 − 1), where

Z̄1 =
√

Z̄2b Z̄2c Z̄g (with

Z̄g = 1).

As an example, we 
onsider diagram (b); then we will give the result for the sum of (a)-(f).

Cal
ulation of diagram (b): b+ u→ d+ c

u

−p− l
−p

d

−p

ll

p

b

l + p

p

c

Box-Diagram

must be UV-�nite. Why?

Afull

b =

(

− ig√
2

)2

(−igs)2
ii

ii

∫
d4l

(2π)4
[d̄γµL(−/l − /p)γαTAu] [c̄γµL(/l + /p)γαTAb]

(l + p)2 (l + p)2 l2 (l2 −m2
W )

TA = λA

2
= 
olour matrix

CKM fa
tors omitted; they will be restored in the �nal result.

Feynman-parametrization:

1

a2bc
=

∫ 1

0

dy dx 6y2
x

[axy + by(1− x) + c(1− y)]4

a = (l + p)2 = l2 + 2lp+ p2 xy
b = l2 −m2

W = l2 −m2
W y(1− x)

c = l2 = l2 (1− y)
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axy + by(1− x) + c(1− y) =l2 + 2lpxy + p2xy −m2
W y(1− x)

=(l + pxy)2 − C
C = m2

W y(1− x)− p2xy + p2x2y2

• l → l − pxy shift. Then put p = 0 in the numerator, be
ause p 6= 0 only used as

regulator.

• /l .../l
∫

= γβ...γ
β l2

4

→ Afull

b = −g2g2s
2

(d̄γµLγβγαT
Au)(c̄γµLγβγαTAb)1

4

∫
6y2x d4l

(2π)4
l2

[l2−C]4

• γµLγβγα ⊗ γµLγβγα ≡ 16γµL⊗ γµL identity (at least in d = 4)

Afull

b = −12g2g2s(d̄γµLTAu)(c̄γµLTAb)

∫

y2x
d4l

(2π)4
l2

[l2 − C]4dx dy

• (d̄αγµLT
A
αβuβ)(c̄γγ

µLTA
γδbδ) = −1

6
(d̄αγµLuα)(c̄βγ

µL bβ) +
1
2
(d̄αγµLuβ)(c̄βγ

µL bα)

Used: TA
αβT

A
γδ = − 1

2Nc
δαβδγδ +

1
2
δαδδβγ

Afull

b = −12g2g2s
[
1

2
S1 −

1

6
S2

]

f

S1 ≡ 〈O1〉tree
S2 ≡ 〈O2〉tree

f =

∫

y2x
d4l

(2π)4
l2

[l2 − C]4dx dy

C = m2
Wy(1− x)− p2xy(1− xy)

f =

∫

dx dyy2x

( −i
48π2

)
1

C

f = − i

48π2

∫

dx dy
xy

m2
W (1− x)− p2x(1 − xy)

For p2 = 0 the integral would be divergent at x = 1.

f =
i

96π2

1

m2
W

[

ln

(−p2
m2

W

)

− 1

2

]

+ terms whi
h vanish in the limit p2 → 0.

The �nal result for Afull

b reads

Afull

b = −i4GF√
2

αs

4π

[
1

2
S1 −

1

6
S2

] [

ln

(−p2
m2

W

)

− 1

2

]

· 4 .
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Sum of diagrams (a)-(f):

A
full

= −i4GF√
2
VcbV

∗
ud

[(

1 + 2CF
αs

4π

(
1

ǫ
+ ln

µ2

−p2 + c1

))

S2

+
3

Nc

αs

4π

(

ln
m2

W

−p2 + c2

)

S2 − 3
αs

4π

(

ln
m2

W

−p2 + c3

)

S1

]

S1 ≡ 〈O1〉tree; S2 ≡ 〈O2〉tree; CF =
4

3
; Nc = 3; c1, c2, c3 are numbers.

1. line: Diagrams (a)+(d)

2. line: (b)+(
)+(e)+(f)

E�e
t of 
ounterterms (g)+(h): They exa
tly 
an
el the 1/ǫ in A
full

above.

For the renormalized result in the full theory we get

Aren

full

= −i4GF√
2
VcbV

∗
ud

[(

1 + 2CF
αs

4π

(

ln
µ2

−p2 + c1

))

S2 +
3

Nc

αs

4π

(

ln
m2

W

−p2 + c2

)

S2

−3αs

4π

(

ln
m2

W

−p2 + c3

)

S1

]

.

We now 
al
ulate the same amplitude in the e�e
tive version of the theory.

b) e�e
tive theory

u d

b c

(a)
(b) (c)

O1 and O2 insertions
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(d) (e)
(f)

For illustration, we work out again diagram (b) with O1 and O2 inserted. We anti
ipate that

there will be divergen
es and therefore work in d-dimensions.

〈O2〉b = ii
1

i
(−igs)2µ̄2ǫ

∫
ddl

(2π)d
(d̄γµL(−/l − /p)γαTAu)(c̄γµL(/l + /p)γαTAb)

(l + p)2 (l + p)2 l2

1

a2b
=

∫ 1

0

dx
2x

[ax+ b(1− x)]3

a = (l + p)2 = l2 + 2lp+ p2 x
b = l2 = l2 (1− x)

[ax+ b(1− x)] = l2 + 2lpx+ p2x =(l + px)2 − C
C = −p2x(1− x)

Shift l → l − px; again we omit /p in the numerator, be
ause we are interested in the limit

p→ 0.

〈O2〉b = ig2s µ̄
2ǫ 1

d

∫
ddl

(2π)d
l2

[l2 − C]3 2 x dx (d̄γµLγβγαT
Au)(c̄γµLγβγαTAb)

︸ ︷︷ ︸

16(d̄γµLTAu)(c̄γµLTAb)

To get the term under the bra
es, we used a 4-dimensional identity. When applying it, one


orre
tly gets only the 1/ǫ-pole and the term log µ. The other terms, however, 
ome out

wrong. How to redu
e

γµLγβγα ⊗ γµLγβγα

in d dimensions, depends on the 
hoi
e of the so-
alled evanes
ent operators. We will see,

that one needs to a good approximation � the so-
alled leading logarithmi
 approximation

� only the log µ terms.
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Only when going beyond leading-log, the business with evanes
ent operators be
omes rele-

vant. So we get:

〈O2〉b = ig2s
1

4
µ̄2ǫ

∫
ddl

(2π)d
l2

[l2 − C]3 2 x dx
︸ ︷︷ ︸

i

16π2 [
1
ǫ
+ln µ2

−p2
+?]

16

[
1

2
S1 −

1

6
S2

]

〈O2〉b = −
g2s

16π2
4

[
1

2
S1 −

1

6
S2

]









1

ǫ
+ ln

µ2

−p2 + ?
︸︷︷︸

depends on


hoi
e of

ev. operators









Cal
ulation of 〈O1〉b similar. The result of the sum of all diagrams (a)-(f) reads:

〈O1〉0 =
(

1 + 2CF
αs

4π

(
1

ǫ
+ ln

µ2

−p2
))

S1 +
3

Nc

αs

4π

(
1

ǫ
+ ln

µ2

−p2
)

S1 − 3
αs

4π

(
1

ǫ
+ ln

µ2

−p2
)

S2 ,

〈O2〉0 =
(

1 + 2CF
αs

4π

(
1

ǫ
+ ln

µ2

−p2
))

S2 +
3

Nc

αs

4π

(
1

ǫ
+ ln

µ2

−p2
)

S2 − 3
αs

4π

(
1

ǫ
+ ln

µ2

−p2
)

S1 .

The index

0
means: unrenormalized matrix elements, i.e., really just the 
ontributions from

diagrams (a)-(f).

As in the full theory we now do the renormalization of the quark �elds (and 
oupling 
on-

stants) in the lowest order 
ontribution, i.e., one takes into a

ount the 
orresponding 
oun-

terterms.

In our 
ase only the renormalization of the quark-�elds is relevant (no other �elds or 
oupling


onstants)

Z̄2 = 1− αs

4π
CF

1

ǫ
The 
ounterterm 
ontributions then are:

〈O2〉c.t.
�elds

= (Z̄2
2 − 1)〈O2〉tree ,

〈O1〉c.t.
�elds

= (Z̄2
2 − 1)

︸ ︷︷ ︸
starts at

order αs

〈O1〉tree .

One sees that these 
ounterterms just remove the �rst 1/ǫ-pole whi
h appears in 〈O1〉0 and
〈O2〉0, respe
tively.

After the renormalization of the quark �elds one has

〈O1〉
quark �eld

ren =

(

1 + 2CF
αs

4π
ln

µ2

−p2
)

S1 +
3

Nc

αs

4π

(
1

ǫ
+ ln

µ2

−p2
)

S1 − 3
αs

4π

(
1

ǫ
+ ln

µ2

−p2
)

S2 ,
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〈O2〉
quark �eld

ren =

(

1 + 2CF
αs

4π
ln

µ2

−p2
)

S2 +
3

Nc

αs

4π

(
1

ǫ
+ ln

µ2

−p2
)

S2 − 3
αs

4π

(
1

ǫ
+ ln

µ2

−p2
)

S1 .

→ Still divergent after quark-�eld renormalization!

→ the lo
al operators O1 and O2 are singular obje
ts. Additional renormalization is needed,


alled �renormalization of 
omposite operators�. We introdu
e new operatos Oren

1,2 :

Oi = Z̄op
ij O

ren

j .

We 
hoose the Z̄op
ij su
h that the matrix elements of the renormalized operators Oren

1,2 be
ome

�nite.

We do the operator renormalization in the MS-s
heme. The 2 × 2 matrix Z̄op

an easily be

read-o�:

Z̄op = 1 +
αs

4π

1

ǫ

( 3
Nc
−3

−3 3
Nc

)

As Z̄op
is a matrix, one says that O1 and O2 mix under renormalization: �Operator mixing�.

After operator renormalization we have our �nite result for 〈Oren

1 〉, 〈Oren

2 〉:

〈Oren

1 〉 =
(

1 + 2CF
αs

4π
ln

µ2

−p2
)

S1 +
3

Nc

αs

4π
ln

µ2

−p2S1 − 3
αs

4π
ln

µ2

−p2S2 ,

〈Oren

2 〉 =
(

1 + 2CF
αs

4π
ln

µ2

−p2
)

S2 +
3

Nc

αs

4π
ln

µ2

−p2S2 − 3
αs

4π
ln

µ2

−p2S1 ,

S1 ≡ 〈O1〉tree , S2 ≡ 〈O2〉tree .

The renormalized amplitude in the e�e
tive theory then reads:

Aren

e�

= −i〈H
e�

〉 = −4iGF√
2
VcbV

∗
ud [C1〈Oren

1 〉+ C2〈Oren

2 〉] .

We now impose the mat
hing 
ondition:

Aren

e�

!
= Aren

full

.

The 
omparison of the 
oe�
ients of S1 and S2 leads to the Wilson 
oe�
ients C1 and C2:

C1(µ) = −3
αs

4π
ln
m2

W

µ2
; C2(µ) = 1 +

3

Nc

αs

4π
ln
m2

W

µ2
.

Remark: They do not depend on the external momentum p2, as expe
ted.
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Noti
e: We only worked out the µ-dependen
e at O(αs). We did not 
al
ulate the 
on-

stant (i.e. µ-independent) terms. The latter would depend on the 
hoi
e of the evanes
ent

operators.

From the expli
it result

C1(µ) = −3
αs

4π
ln
m2

W

µ2
; C2(µ) = 1 +

3

Nc

αs

4π
ln
m2

W

µ2

we see that the Wilson 
oe�
ients C1(µ), C2(µ) get large logarithms when 
hoosing µ ≈ mb.

One the other hand µ is an arbitrary s
ale. Why should we put µ ≈ mb? When 
hoosing

µ ≈ mW instead, then the log's in the Wilson 
oe�
ients would be small!

We have to take into a

ount, that the physi
s is not only 
ontained in the Wilson 
oe�
ients,

but also in the matrix elements of the operators!

The e�e
tive operators only 
ontain the light �elds, the heaviest one is the b-quark in our

appli
ation. The matrix elements of the operators also depend logarithmi
ally on µ:

〈O1,2〉 ∼ ln
µ

m
.

m is the mass (or external momentum) of a parti
le whi
h o

urs in the e�e
tive theory. m
is therefore typi
ally of O(mb) and 
ertainly not mW (or mt).

When 
hoosing µ ≈ mb, then the matrix elements are free of large logs. In this 
ase, however,

the Wilson 
oe�
ients 
ontain large logs.

When 
hoosing µ ≈ mW the situation is just vi
e-versa.

⇒ No free lun
h! Large log's are simply present! These large terms have to be resummed

to all orders. At µ ≈ mb these log's are in the Wilson 
oe�
ients.

In n-th order (n-gluon ex
hanges) the leading term of the Wilson 
oe�
ients is of the form:

(
αs(µb)

4π

)n

lnn m
2
W

µ2
b

; µb = O(mb) .

These terms are 
alled �leading logarithms (LL)�.

The so-
alled next-to-leading logarithms (NLL) are of the form (again n-gluon ex
hanges):

(
αs(µb)

4π

)n

lnn−1 m
2
W

µ2
b

.
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What did we a
tually 
al
ulate so far when using this language?

C1(µb) = −3
αs(µb)

4π
ln
m2

W

µ2
b

; C2(µb) = 1 +
3

NC

αs(µb)

4π
ln
m2

W

µ2
b

So: 0 gluon 
ontribution and 1 gluon ex
hange expli
itly 
al
ulated. For both, n = 0 and

n = 1, we are at LL pre
ision.

In the n = 1 
al
ulation we mentioned that the Wilson 
oe�
ients 
ontain a term without a

logarithm. We did not 
al
ulate it, be
ause we didn't want to enter the business of evanes
ent

operators. The result, e.g. for C2(µb), would be of the form

C2(µb) = 1 +
3

Nc

αs(µb)

4π
ln
m2

W

µ2
b

+ c · αs(µb)

4π
, where c is a number.

The added term (proportional to c) is a NLL term and therefore less important.

In the following we want to 
onsider the resummation of the LL-terms to all orders in per-

turbation theory.

Before really doing so, it is 
onvenient to systematize a little bit the renormalization issues

in the e�e
tive theory.

4.4 A di�erent look at operator renormalization

We try to systematize the renormalization in the e�e
tive theory. In parti
ular, we want to

implement the 
ounterterm formalism 
on
erning 
omposite operators.

As a �rst step all quantities in H
e�

are understood to be bare quantities, i.e. the �elds,

the 
ouplings, the masses if present. In parti
ular, the Wilson 
oe�
ients are treated like


oupling 
onstants, i.e., as bare quantities at the starting point.

H
e�

= Cbare

i Oi(q
bare) ;

4GF√
2
VcbV

∗
ud omitted

At this level the operators are 
omposed of bare �elds, as the notation indi
ates. We now

write qbare and Cbare

i in terms of the 
orresponding renormalized quantities

qbare = Z̄
1/2
2 q ; Cbare

i = Z̄c
ijCj .

The renormalization of the Wilson 
oe�
ients repla
es the renormalization of the operators.

H
e�

= Z̄2
2 Z̄

c
ij CjOi
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Oi: now 
ontains renormalized �elds.

H
e�

= CiOi + (Z̄2
2 Z

c
ij − δij

︸ ︷︷ ︸

starts atO(αs)

)CjOi

︸ ︷︷ ︸
→ 
ounterterm

In this formulation the renormalized matrix element Aren

e�


an be 
ompa
tly written as

Aren

e�

= −i Z̄2
2 Z̄

c
ij Cj〈Oi〉0 ,

where 〈Oi〉0 is regularized matrix element and where Z̄2
2 Z̄

c
ij 
ontains the 
ounterterms.

In the old formulation (where we were speaking about operator renormalization), we had for

Aren

e�

in 
ompa
t notation:

Aren

e�

= −i Z̄2
2 (Z̄

op)−1
ji Cj〈Oi〉0

Exer
ise: Convin
e yourself that this is true!

Compare the results of the two formulations:

⇒ Z̄c
ij = (Z̄op)−1

ji ⇔ Z̄c = (Z̄op)−1T
matrix notation

Z̄c = 1− αs

4π

1

ǫ

( 3
Nc
−3

−3 3
Nc

)

+O(α2
s)

Moral: Either the operators or the Wilson 
oe�
ients get renormalized, but not both!

4.5 Renormalization-group equations

The �nal goal is to derive a di�erential equation, whi
h governs the µ-dependen
e of the Wil-

son 
oe�
ients C1(µ) and C2(µ): Renormalization-group equations for the Wilson 
oe�
ients.

In order to solve it, we have to know how gs(µ) depends on µ.

As in many situations the operators 
ontain mass fa
tors m(µ) (besides the �elds of whi
h
they are 
omposed), we need to know also the µ-dependen
e of the masses.

4.5.1 Running 
oupling gs(µ)

We are only interested in higher order QCD-e�e
ts. We start with the QCD Lagrangian,

whi
h at the beginning is expressed in terms of bare quantities.

O

uring quantities: gbares , mbare

i , ψbare

i , AA
bare

where i = u, d, c, s, t, b.
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[gbares ] = (mass)
4−d
2 = (mass)ǫ; (d = 4− 2ǫ)

We express the bare quantities in terms of the renormalized ones:

gbares = µǫZ̄gs gs

mbare

i = Z̄mi
mi

et
.

We 
onstru
t the 
ounterterm Lagrangian and �x the various (Z̄ − 1)-fa
tors in su
h a way

that the Greens-fun
tions get �nite when taking into a

ount the 
ounterterms.

The s
ale µ was not there in the original formulation; we introdu
ed it in order to have the

renormalized 
oupling gs dimensionless.

Physi
s should be independent of the 
hoi
e of µ! This only works when we a

ept that gs
depends on µ in a very spe
i�
 way: gs(µ)

(1) µ
d

dµ
gbares = 0 (obvious)

Call gs ≡ g in the following (just to simplify the notation).

Consequen
es of (1):

µ
d

dµ
gbare = µ

d

dµ
[µǫZ̄g g(µ)] = 0

0 = ǫµǫZ̄gg(µ) + µǫ(µ
d

dµ
Z̄g)g(µ) + µǫZ̄g(µ

d

dµ
g(µ))

→ µ
d

dµ
g(µ) = −ǫg(µ)− 1

Z̄g

(µ
d

dµ
Z̄g)g(µ)

︸ ︷︷ ︸

=:β(g(µ),ǫ)

β(g, ǫ) = −ǫg + β(g)

β(g) = −g 1

Z̄g

(µ
d

dµ
Z̄g)

The renormalized 
oupling g(µ) is �nite for ǫ→ 0, 
onsequently also β(g).

In the MS (MS) s
heme, the Z̄i-fa
tors depend on µ only via g(µ). They have no expli
it

µ-dependen
e. Furthermore, they are also independent of masses.

Z̄i = 1 +

∞∑

k=1

1

ǫk
Z̄i,k(g)
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Claim: β(g) = g2 ∂Z̄g,1

∂g

Note that k is always 1: in ea
h order in g only the 1/ǫ-pole 
ounts for the β-fun
tion!!

Proof:

β(g) = −g 1

Z̄g

(µ
d

dµ
Z̄g)

β(g) = −g 1

Z̄g

(µ
dg

dµ
)

︸ ︷︷ ︸

β(g,ǫ)

∂Z̄g

∂g

Z̄gβ(g) = −g β(g, ǫ)
∂Z̄g

∂g

β(g)

[

1 +
Z̄g,1

ǫ
+
Z̄g,2

ǫ2
+ ...

]

= −g β(ǫ, g)
︸ ︷︷ ︸

−gǫ+β(g)

1

ǫ

[
∂Z̄g,1

∂g
+

1

ǫ

∂Z̄g,2

∂g
+ ...

]

β(g)

[

1 +
Z̄g,1

ǫ
+
Z̄g,2

ǫ2
+ ...

]

= g2
[
∂Z̄g,1

∂g
+

1

ǫ

∂Z̄g,2

∂g
+ ...

]

− gβ(g)1
ǫ

[
∂Z̄g,1

∂g
+

1

ǫ

∂Z̄g,2

∂g
+ ...

]

Equate the ǫ0-terms in the above equation:

→ β(g) = g2
∂Z̄g,1

∂g

So we have:

µ
d

dµ
g(µ) = −ǫg + β(g); β(g) = g2

∂Z̄g,1

∂g
; with Z̄g = 1 +

Z̄g,1

ǫ
+
Z̄g,2

ǫ2
+ ...
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For the following, we need Z̄g expli
itly. To �x Z̄g at order g2, we 
an look e.g. at the

one-loop QCD 
orre
tion to the following tree-vertex:

g

q q

1-PI vertex 
orre
tion diagrams:

g

q q

g

g

q q

g

g

q q

g

Z̄g enters the 
ounterterm

(
√

Z̄AZ̄2Z̄2Z̄g − 1)

Requirement: Diagrams + 
ounterterms

!
=�nite

→ �xes the 
ombination

√

Z̄AZ̄2Z̄2Z̄g − 1.

Need to work out Z̄A (and Z̄2) before we 
an �x Z̄g.

But we just give the result for Z̄g.

Result:

Z̄gs = 1− g2s
16π2

[
11

6
Nc −

2

6
f

]
1

ǫ
+O(g4s)

The terms proportional to g2s 
orrespond to 1-loop 
orre
tions, et
. Z̄gs is known up to four

loops!
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f : Number of �avours whi
h run in the fermion-loop.

Nc: Number of 
olours (Nc = 3).

Exer
ise: Whi
h fermion-loops are meant?!

Summary:

β(gs) = g2s
∂Z̄gs,1

∂gs
= g2s

(−2 gs
16π2

)[
11

6
Nc −

2

6
f

]

+O(g5s) .

β(gs) = −β0 g3s
16π2 − β1 g5s

(16π2)2
− β2 g7s

(16π2)3
− ...

β0 =
11Nc−2f

3
; β1 =

34
3
N2

c − 10
3
Ncf − 2CFf ; CF = 4

3

d = 4

µ d
dµ
gs(µ) = β(gs) = −β0 g3s

16π2 − β1 g5s
(16π2)2

− ...
Equation for αs(µ) αs(µ) =

g2s(µ)
4π

;

µ d
dµ
αs(µ) = −2β0 α2

s

4π
− 2β1

α3
s

(4π)2
− ...

The last line is 
alled �renormalization group equation (RGE) for αs(µ)�.

Solution of the RGE for αs(µ)

We only keep the leading term of the β-fun
tion.

µ
d

dµ
αs(µ) = −2β0

α2
s(µ)

4π

→ Ordinary di�erential equation of �rst order. Need one initial 
ondition: αs(µ0)

Put: µ = µ0 e
t; t = ln µ

µ0

µ
d

dµ
= µ

dt

dµ
︸︷︷︸

1
µ

d

dt
=

d

dt

d

dt
αs(t) = −2β0

α2
s(t)

4π
; αs(t = 0)=̂αs(µ0)

α̇s(t)

α2
s(t)

= −2β0
4π

∫ t

0

α̇s(t
′)

α2
s(t

′)
dt′ = −2β0

4π
t

∫ αs(t)

αs(0)

1

α2
s

dαs = −
2β0
4π

t

45



− 1

αs

∣
∣
∣
∣

αs(t)

αs(0)

= −2β0
4π

t

− 1

αs(t)
+

1

αs(0)
= −2β0

4π
t

1

αs(t)
=

1

αs(0)
+
β0
2π
t

αs(t) =
αs(0)

1 + β0

2π
αs(0)t

or

αs(µ) =
αs(µ0)

1 + β0

2π
αs(µ0) ln

µ
µ0

(4.1)

In high energy pro
esses it is favorable to 
hoose µ = E, where E is the 
hara
teristi
 energy

s
ale of the pro
ess. When 
hoosing a µ-value, whi
h has nothing to do with the relevant

energies of the pro
ess, the predi
tions 
ontain expli
it ln E
µ
terms whi
h are large.

→ A 
onvenient 
hoi
e of µ absorbs these logarithms into αs(µ) → better behaved pertur-

bation theory.

Energy larger → µ larger; β0 =
11Nc−2f

3
> 0.

From the LEP pre
ision measurements done at the Z-pole, αs(mZ) was extra
ted:

αs(mZ) = 0.118± 0.003 (MS, f = 5).

We will use this value as initial 
ondition of the RGE, i.e., µ0 = mZ .

Expand eq. (4.1):

αs(µ) = αs(µ0)

[

1− β0
2π
αs(µ0) ln

µ

µ0
+

(
β0
2π

)2

α2
s(µ0) ln

2 µ

µ0
+ ...

]

46



→ leading logarithms (LL) resummed!!

If we had taken into a

ount the next term in the β-fun
tion, i.e. the one involving β1, then
the RGE would also resum the next-to-leading logarithms (NLL).

4.5.2 Running masses

The bare masses mbare

i and the renormalized masses mi are related a

ording to

mbare

i = Z̄mi
mi (we skip the label i)

Z̄m has an expansion in powers of g (and in inverse powers of ǫ), like Z̄g. Again the bare

mass mbare

is independent of µ. This only works if the renormalized mass m is µ-dependent:
m(µ).

0 = µ
d

dµ
mbare = µ

d

dµ
[Z̄mm(µ)]

0 = (µ
d

dµ
Z̄m)m+ Z̄m(µ

d

dµ
m)

µ
d

dµ
m(µ) = − 1

Z̄m

(µ
d

dµ
Z̄m)

︸ ︷︷ ︸
=:γm

m(µ)

µ
d

dµ
m(µ) = −γmm(µ); γm =

1

Z̄m

(µ
d

dµ
Z̄m).

Like Z̄g, also Z̄m depends in the MS (MS)-s
heme on µ only via g. Similar to the derivation

of β(g), one 
an show that

γm(g) = −g
∂Z̄m,1

∂g
(
Z̄m = 1 +

∑∞
k=1

1
ǫk
Z̄m,k

)

Exer
ise: Show it!

The renormalization fa
tor Z̄m to order g2s reads:

Z̄m = 1− g2s
16π2

CF
3

ǫ
+O(g4s);

(

CF =
4

3
.

)

⇒ γm = −gs
(

− 2gs
16π2

CF 3

)

+O(g4s)
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γm =
αs

4π
6CF +O(α2

s) .

Generally, γm has an expansion is αs:

γm =
αs

4π
γ(0)m +

(αs

4π

)2

γ(1)m + ...

γ(0) = 6CF ; γ(1) = CF

(

3CF +
97

3
Nc −

10

3
f

)

.

To summarize: The renormalization group equation for the running mass m(µ) reads

µ
d

dµ
m(µ) = −γm(g(µ))m(µ)

Solution: At µ = µ0 we impose the initial 
ondition m(µ0).

m(µ) = m(µ0) exp

[

−
∫ g(µ)

g(µ0)

dg′
γm(g

′)

β(g′)

]

(exa
t expression!)

Che
k:

µ
d

dµ
m(µ) = m(µ0)e

−
∫
...

︸ ︷︷ ︸

m(µ)

[−γm(g(µ))]
β(g(µ))

µ
d

dµ
g(µ)

︸ ︷︷ ︸

β(g(µ))

µ
d

dµ
m(µ) = −γm(g(µ))m(µ) (o.k.!)

Solution when using lowest order expressions for the β- and the γm-fun
tions:

m(µ) = m(µ0)

[
αs(µ))

αs(µ0)

]γ
(0)
m
2β0

.

Exer
ise: Show this!

If one expands this formula, one sees that also here the leading logarithms get resummed.

→ Next: RGE for C1(µ) and C2(µ).
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4.5.3 Renormalization group equation for C1(µ), C2(µ)

Starting point:

Cbare

i = Z̄c
ijCj

~Cbare = Z̄c ~C (matrix notation)

0 = µ
d

dµ
~Cbare =

(

µ
d

dµ
Z̄c

)

~C + Z̄c

(

µ
d

dµ
~C

)

µ
d

dµ
~C = −(Z̄c)−1

(

µ
d

dµ
Z̄c

)

~C

De�nition:

γ̂ :=(Z̄op)−1

(

µ
d

dµ
Z̄op

)

anomalous dimension matrix

Z̄op =[(Z̄c)−1]T

→ γ̂ =(Z̄c)Tµ
d

dµ
(Z̄c)−1T

γ̂T =

(

µ
d

dµ
(Z̄c)−1

)

Z̄c = −(Z̄c)−1

(

µ
d

dµ
Z̄c

)

→ µ
d~C

dµ
= γ̂T ~C

Solution:

~C(µ) = Û(µ, µ0) ~C(µ0)

Û(µ, µ0) = Tg′ exp

[
∫ g(µ)

g(µ0)

dg′
γ̂T (g′)

β(g′)

]

; evolution matrix

γ̂ from Z̄op
:

Z̄op = 1+

∞∑

k=1

1

ǫk
Z̄op

k (g) ; µ-dependent only via g(µ) in MS (MS) s
heme.

Exer
ise: γ̂(g) = −g ∂Z̄op
1

∂g

Z̄op = 1+
g2

16π2

1

ǫ

(
3
Nc
−3

−3 3
Nc

)

+O(g4) .

γ̂ = − 2g2

16π2

( 3
Nc
−3

−3 3
Nc

)

+O(g4)
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γ̂ =
αs

4π

(− 6
Nc

6

6 − 6
Nc

)

+O(α2
s)

γ̂ =
αs

4π
γ̂0 +O(α2

s); γ̂0 =

(− 6
Nc

6

6 − 6
Nc

)

Û(µ, µ0) = Tg′ exp

[
∫ g(µ)

g(µ0)

dg′
[ g′2

16π2 γ̂
0T +O(g′4)]

[−β0 g′3

16π2 +O(g′5)]

]

Û(µ, µ0) = Tg′ exp

[
∫ g(µ)

g(µ0)

dg′
−γ̂0T
β0 g′

[1 +O(g′2)]
]

at lowest order:

Û(µ, µ0) = exp

[

−γ̂0T
β0

∫ g(µ)

g(µ0)

dg′

g′

]

= exp

[−γ̂0T
β0

ln
g(µ)

g(µ0)

]

Û(µ, µ0) = exp

[−γ̂0T
2β0

ln
αs(µ)

αs(µ0)

]

Diagonalize γ̂0T , i.e. �nd a matrix V su
h that

γ̂0T = V γ̂0D V
−1 ; with γ̂0D diagonal.

→ Û(µ, µ0) = V

(

exp

[−γ̂0D
2β0

ln
αs(µ)

αs(µ0)

])

V −1

Û(µ, µ0) = V




αs(µ0)

αs(µ)

~γ(0)

2β0





D

V −1

~γ(0) ≡ diag(γ̂0D). Expli
itly V and V −1
read

V =
1√
2

(
1 1
1 −1

)

; V −1 =
1√
2

(
1 1
1 −1

)

.

Using this, we get

γ̂0D =

(
6(Nc−1)

Nc
0

0 −6(Nc+1)
Nc

)

→ ~γ(0) =

(
6(Nc − 1)

Nc
,−6(Nc + 1)

Nc

)
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β0 =
11Nc − 2f

3
; f = 5 (u, d, c, s, b, ✁❆t).

Note that the top quark t is integrated out.

⇒β0 =
23

3
~γ(0) = (4,−8)

Û(µ, µ0) = V

(
r

6
23 0

0 r
−12
23

)

V −1; r :=
αs(µ0)

αs(µ)

Û(µ, µ0) =
1

2

(

r
6
23 + r

−12
23 r

6
23 − r−12

23

r
6
23 − r−12

23 r
6
23 + r

−12
23

)

.

µ = µW (= O(mW )):

• The Wilson 
oe�
ients do not 
ontain large logarithms.

• The matrix elements of the operators have large logarithms.

µ = µb (= O(mb)) :

• The Wilson 
oe�
ients 
ontain large logarithms.

• The matrix elements of the operators are free of large logarithms.

⇒ Do mat
hing at µ = µW : Ci(µW )
RGE−→ Wilson 
oe�
ients at µ = µb : Ci(µb); i.e.

~C(µb) = Û(µb, µW ) ~C(µW )

Û(µb, µW ) : 
ontains
(

αs(µb) ln
µ2
W

µ2
b

)N

in resummed form.

~C(µW ) : αs-
orre
tions �small�, no large logarithms→ At LL-pre
ision, it is not even ne
es-

sary to 
al
ulate the αs-
orre
tions at µ = µW !

Therefore: C1(µW ) = 0 and C2(µW ) = 1.

At the s
ale µ = µb we then have

C1(µb) =
1

2

[
η6/23 − η−12/23

]
; C2(µb) =

1

2

[
η6/23 + η−12/23

]
,
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with η = αs(µW )/αs(µb); The running αs(µ) reads

αs(µ) =
αs(mZ)

1− β0 αs(mZ )
2π

ln mZ

µ

; αs(mZ) = 0.118± 0.003, mZ = (91.1867± 0.0021) GeV, (LEP-I).

Exer
ise: We previously 
al
ulated Ci(µ) expli
itly in order αs pre
ision; in parti
ular we

worked out the αs lnµ-term. Expand the resummed result and show that the αs lnµ term

indeed 
oin
ides.

Example: Choose the mat
hing s
ale µW = mW = 80.4 GeV, µb = 5 GeV.

C1(mW ) = 0; C2(mW ) = 1

C1(5 GeV) = −0.221; C2(5 GeV) = 1.093

[αs(mZ) = 0.118; αs(mW ) = 0.120; αs(5 GeV) = 0.203.]

4.6 Summary

H
e�

for b→ cūd (or bu→ cd)

H
e�

=
4GF√

2
VcbV

∗
ud [C1(µ)O1(µ) + C2(µ)O2(µ)] +✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤

dim. 8,10,.. operators

µ = µW : Do the mat
hing, i.e. �x Ci(µW ), where µW is of the order of mW .

Do RGE-evolution; Û(µb, µW ) is at work in this step

µ = µb: Ci(µb) are obtained, the large logarithms are 
ontained in Ci(µb) in resummed form.

It remains to 
al
ulate the matrix elements of the operators: 〈Oi(µb)〉:

This is the most di�
ult problem, be
ause non-pertubative in general!

• For in
lusive B̄0
-de
ays: B̄0 → Xc

Xc : hadroni
 �nal state with 
harmness=1
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As mb ≫ ΛQCD (ΛQCD ∼ binding energy in the B̄0
-meson): The hadroni
 matrix

element is dominated by the quark transition b→ cūd:

Γ(B̄0 → Xc) = Γ(b→ cūd)
︸ ︷︷ ︸

dominant 
ontr.

+O
(
Λ2

QCD

m2
b

)

︸ ︷︷ ︸

worked out:

<4% 
orre
tion

.

• For ex
lusive de
ays: B̄0 → D+π−

〈D+π−|Oi(µ)|B̄0〉 not 
al
ulable from �rst prin
iples! Latti
e not ready yet.

Fa
torization Ansätze, other models.

Usually, for in
lusive de
ays the perturbative 
orre
tions are more important than the power


orre
tions of the form Λ2
QCD/m

2
b . We now state what is needed to 
al
ulte the in
lusive de
ay

width in leading-logarithmi
 (LL) and next-to-leading logarithmi
 (NLL) approximation.

LL approximation:

• Mat
hing to order α0
s pre
ision.

• RGE with γ̂ = αs

4π
γ̂(0) +✘✘✘✘✘❳❳❳❳❳(αs

4π
)2γ̂(1) +✘✘✘✘✘❳❳❳❳❳(αs

4π
)3γ̂(2) + ...

• Evaluation of the matrix elements at the s
ale µb to order α0
s pre
ision.

NLL approximation:

Ea
h of the three steps needs to be improved by an additional power of αs, i.e.,

• Mat
hing to order α1
s pre
ision.

• RGE with γ̂ = αs

4π
γ̂(0) + (αs

4π
)2γ̂(1) +✘✘✘✘✘❳❳❳❳❳(αs

4π
)3γ̂(2) + ...

• Evaluation of the matrix elements at the s
ale µb to order α1
s pre
ision.

53



5 E�e
tive Hamiltonian for ∆B = ∆S = 1 transitions

s

ū

W−
b

u

(a) (b)

∼ VcbV
∗
cs

∼ VubV
∗
us

O(λ2) O(λ4)

s

c̄

W−
b

c

λ : Wolfenstein-parameter λ ≈ 0.2 ; negle
t the u-
ontribution.

VcbV
∗
cs + VtbV

∗
ts + VubV

∗
us = 0 (exa
t due to the unitarity of CKM matrix)

→ VcbV
∗
cs
∼= −VtbV ∗

ts .

In analogy to the 
ase b→ cūd, diagram (a) gives rise to the following operators:

HCC
eff = 4GF√

2
VcbV

∗
cs

︸ ︷︷ ︸

−VtbV
∗
ts

[C1(µ)O1(µ) + C2(µ)O2(µ)]

O1 = s̄αγµLcβ c̄βγ
µL bα

O2 = s̄αγµLcα c̄βγ
µL bβ

The Wilson 
oe�
ients C1(µ), C2(µ) are the same as those for b→ cūd.

O1 and O2 are 
alled 
urrent-
urrent (CC) operators.

Note that there additional operators (for ∆B = ∆S = 1) generated by QCD:

b

W

s

g

q̄ q

t t

Peguin-diagram

There are two form-fa
tors in the limit ms → 0:
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b

W

st t

g∗
µ

∼
[
s̄(q2γµ − qµ/q)LTAb)

]
· F g

1 (mt, mW )

+
[
s̄(iσµνq

νmbR) T
Ab
]
· F g

2 (mt, mW )
(5.1)

The �rst stru
ture leads to a lo
al operator when atta
hing �the feet� of the penguin:

s̄(q2γµ − qµ/q)LTAb
1

q2
︸︷︷︸

from

gluon-prop.

q̄γµTAq

= (s̄γµ✓✓❙❙q
2LTAb)

✁
✁
✁❆
❆
❆

1

q2
(q̄γµTAq)

= (s̄γµLT
Ab)(q̄γµ1TAq) ; q ∈ {u, d, c, s, b}

Exer
ise: Why did we �ignore� the 
ontribution from qµ/q in the equation above?

Lorentz stru
ture: De
ompose the result w.r.t. L and R: 1 = L+R .

Colour stru
ture: De
ompose the 
olor stru
ture by using TA
αβT

A
γδ = − 1

2Nc
δαβδγδ +

1
2
δαδδβγ .

By doing these de
ompositions, four operators are generated, the so-
alled QCD-penguin

operators O3, O4, O5 and O6:

O3 = (s̄αγ
µLbα)

∑

q

(q̄βγµLqβ) ,

O4 = (s̄αγ
µLbβ)

∑

q

(q̄βγµLqα) ,

O5 = (sαγ
µLbα)

∑

q

(q̄βγµRqβ) ,

O6 = (sαγ
µLbβ)

∑

q

(qβγµRqα) .

The stru
ture proportional to F g
2 in (5.1) leads (in position spa
e) to the operator (ms = 0)

O8 =
gs

16π2
mb s̄ασ

µνRTA
αβbβ G

A
µν .

QCD has generated the operators O3 − O6 and O8. In a similar way, also the ele
tro-weak

intera
tion generates new operators:
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+

q

γ

b

W

s

q̄

t t

q

γ

b

s

q̄

t

W

∼
[
s̄(q2γµ − qµ/q)Lb

]
F γ
1 (mt, mW )

+ [s̄(iσµνq
νmbR)b]F

γ
2 (mt, mW )

The stru
ture proportional to F γ
2 leads to the operator

O7 =
e

16π2
mb s̄ασ

µνRbα Fµν .

The �rst stru
ture (∼ F γ
1 ) leads again to 4-Fermi-operators, when atta
hing the feet of the

penguin.

When ex
hanging a Z0
instead of a γ, also a lo
al 4-Fermion operator is generated whi
h is

of the same order: GFα

q

Z0

b

W

s

q̄

t t

In this order, there are also W -boxes, whi
h lead to 4-Fermi-operators:

b W s

tt

d, s, b

W

d, s, b

b t s

WW

d, s, b

t

d, s, b
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The four-Fermi operators, whi
h are generated through γ, Z0,W±
ex
hange, are 
alled

ele
tro-weak penguin operators. They read

O9 =
3
2
(s̄αγµLbα)

∑

q eq(q̄βγ
µR qβ)

O10 =
3
2
(s̄αγµLbβ)

∑

q eq(q̄βγ
µR qα)

O11 =
3
2
(s̄αγµLbα)

∑

q eq(q̄βγ
µL qβ)

O12 =
3
2
(s̄αγµLbβ)

∑

q eq(q̄βγ
µL qα)

Remark: Stri
tly speaking, the ele
tro-weak intera
tion only generates O9 and O11. O10 and

O12 only 
ome into the game when swit
hing on QCD

1

. An example of a diagram whi
h

generates O10 and O12 is the following:

q

Z0

b

W

s

q̄

t t

g

generates O10, O12.

Remark: Instead of a quark-pair (q̄q), one also 
ould have a lepton-pair, as for example in

the pro
ess b→ sµ+µ−
.

In this 
ase operators analogous to O9 and O11 are generated, while operators analogous to

O10 and O12 are not there. Why not?

1

This is similar as in se
tion 4.1: In absen
e of QCD one only had O2; O1 enters the game when swit
hing

on QCD.
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5.1 Pro
ess b→ sγ

Whi
h of the operators just dis
ussed should be in
luded in this 
ase? Consider the matrix

elements of the various operators Oi: 〈sγ|Oi|b〉

O1, O2 :

b sO1, O2

γ

cc
∼ GF e

︸︷︷︸
strength w.r.t

ele
tro-weak

O3 −O6 :

b sO3 − O6

γ

cc ∼ GFe

O7 :

O7

b s

γ

∼ GFe
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O8 : b s

g

s s

γ

O8

∼ GFe

Note that the fa
tor GF 
omes from the prefa
tor in the e�e
tive Hamiltonian, not from the

operators.

O9 −O12 :

b sO9 − O12

γ

q, lq, l
∼ GF · e2e

q: quarks, l: 
harged lep-

tons

The 
ontribution to the amplitude is suppressed by α = 1
137

.

As the operators O9 − O12 give suppressed (in α) 
ontributions to b → sγ, one only takes

into a

ount O1 − O8:

H
e�

(b→ sγ) = −4GF√
2
VtbV

∗
ts

8∑

i=1

Ci(µ)Oi(µ); µ : Renormalization-s
ale (separation s
ale)

O1 = s̄αγµL cβ c̄βγ
µL bα

O2 = s̄αγµL cαc̄βγ
µL bβ

O3 = s̄αγµL bα
∑

q

q̄βγ
µL qβ

O4 = s̄αγµL bβ
∑

q

q̄βγ
µL qα

O5 = s̄αγµL bα
∑

q

q̄βγ
µR qβ
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O6 = s̄αγµL bβ
∑

q

q̄βγ
µR qα

O7 =
e

16π2
mb(µ)s̄ασ

µνRbαFµν Fµν : photoni
 �eld-strength

O8 =
gs(µ)

16π2
mb(µ)s̄ασ

µνRTA
αβbβG

A
µν GA

µν : gluoni
 �eld-strength

b→ sγ (full theory)

b s

W

g

γ

t

mb ≪ mt, mW ;M = mt ormW

large logarithms: ln mb

M

The large logarithms have to be resummed.

Pro
eed as in se
tion 4.1, i.e.,

Ci(µW ) at the mat
hing s
ale µ = µW (O(mW , mt))

RGE

Ci(µb) at the lower s
ale µ = µb (O(mb))

The matrix elements 〈Oi(µb)〉 are 
al
ulated at the low s
ale µb.

Ci(µb) 
ontains the large logarithms in resummed form.

In leading-logarithmi
 pre
ision: [(αs ln
µW

µb
)N ℄

• Mat
hing: Ci(µW ) in O(α0
s).

• Anomalous dimension matrix: γ̂ =
αs

4π
γ̂0

︸ ︷︷ ︸

su�
ient

(8× 8 matrix).
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• Matrix elements: 〈sγ|Oi(µb)|b〉) in O(α0
s).

5.1.1 Mat
hing at O(α0
s)

C1 is only indu
ed at order αs; the same is true for C3 − C6.

C1(µW ) = C3(µW ) = C4(µW ) = C5(µW ) = C6(µW ) = 0 ,

C2(µW ) = 1 .

We now want to determine C7(µW ).

To do so, we 
al
ulate b→ sγ at order α0
s in the full theory and also in the e�e
tive theory,

at s
ale µ = µW .

E�e
tive theory:

At this s
ale only the 
oe�
ients of O2, O7, O8 are di�erent from zero.

b sC2O2

γ

The diagram is identi
ally zero for an on-shell

photon (in d-dimensions).

b s

g

s s

γ

C8O8

is of order α1
s : too high!

Therfore: Only O7 
ontributes in the e�e
tive theory at order α
0
s. The 
orresponding diagram

is:
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C7O7

b s

γ

Full theory:

b s

W

i i i = u, c, t

×: possible pla
e for γ-emission→ 4 diagrams

The result for the amplitude A is of the form

A = VtbV
∗
tsf(mt;mW ) + VcbV

∗
csf(mc;mW ) + VubV

∗
usf(mu;mW ) .

A would be zero for mu = mc = mt!

The 1/ǫ-pole in f(mt, mW ) is independent of mi. Due to the unitarity relation VtbV
∗
ts +

VcbV
∗
cs+VubV

∗
us = 0 the result is �nite. The fun
tion f has a well-de�ned limit when mi → 0.

To a very good approximation one 
an put mu = mc = 0. Doing the 
al
ulation in the full

theory and 
omparing it with the e�e
tive theory one �nds:

C7(µW ) = z[6z(3z−2) ln z−(z−1)(8z2+5z−7)]
24(z−1)4

z =
m2

t

m2
W

Although not really needed for b→ sγ, what would be C8(µW )?

C8(µW ) =? The 
al
ulation is very similar. Just 
onsider b→ sg instead of b→ sγ.

b s

W

i i i = u, c, t

×: possible lo
ation for g-emission → 3 dia-

grams
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C8(µW ) = −z[6z ln z+(z−1)(z2−5z−2)]
8(z−1)4

(In the e�e
tive theory only O8 
ontributes.)

5.1.2 Anomalous Dimension matrix and RGE

The anomalous dimension matrix γ̂ 
an be expanded as

γ̂ =
αs

4π
γ̂(0) + (

αs

4π
)2γ̂(1) + ...

We only need γ̂0, reading

γ̂(0) =















-2 6 0 0 0 0 0 3

6 -2 -2/9 2/3 -2/9 2/3 416/81 70/27

0 0 -22/9 22/3 -4/9 4/3 -464/81 545/27

0 0 44/9 4/3 -10/9 10/3 136/81 512/27

0 0 0 0 2 -6 32/9 -59/3

0 0 -10/9 10/3 -10/9 -38/3 -296/81 -703/27

0 0 0 0 0 0 32/3 0

0 0 0 0 0 0 -32/9 28/3















.

γ̂(0) =

1 loop

2 loop

Example for a 2-loop 
ontribution: Contribution to γ
(0)
27 , i.e.,
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b sO2

γ

g

µ
d

dµ
~C(µ) = γ̂T ~C(µ) RGE for Wilson-
oe�
ients.

Solve the RGE using

~C(µW ) from the pages before as initial 
ondition at µ = µW . Solving

the RGE leads to

~C(µb). For expli
it expressions see literature, e.g. the review of Buras.

5.1.3 Matrix element 〈sγ|H
e�

|b〉

We now have to 
al
ulate the matrix elements 〈sγ|Ci(µb)Oi(µb)|b〉 in order α0
s pre
ision:

• From the 4-Fermi-operators only O5 and O6 
ontribute.

a)

b sCiOi

γ
i = 5, 6

Note: C5(µb), C6(µb) 6= 0 (only C5(µW ) = C6(µW ) = 0)

• From O7:

b)

64



C7O7

b s

γ

It turns out that the results of the loops in a) have the same stru
ture as the tree-level

diagram in b).

Can therefore easily summarize both 
ategories a) and b):

C7 → Ce�

7 = C7 −
1

3
C5 − C6 .

The amplitude A then reads

A(b→ sγ) = −4GF√
2
VtbV

∗
tsC

e�

7 (µb)〈sγ|O7|b〉tree

Numeri
ally we have for Ce�

7 at the mat
hing s
ale µW = mW : Ce�

7 (mW ) = −0.192. At the
low s
ale µb we get (after using the RGE)

Ce�

7 (10 GeV) = −0.268 ,
Ce�

7 (5 GeV) = −0.299 ,
Ce�

7 (2.5 GeV) = −0.334 ,

where µb is varied in the typi
al range 2.5 GeV ≤ µb ≤ 10 GeV. We see that the dependen
e

on µb is large! In LL approximation the µb dependen
e is only in the Wilson-
oe�
ients.

This means that the amplitude su�ers from a large s
ale (µb) dependen
e at LL pre
ision!
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5.1.4 Result for BR(b→ sγ) in various approximations

Figure taken from C. G., T. Hurth, D. Wyler, PRD54 (1996) 3350.

The �gure shows the bran
hing ratio for b → sγ based on the leading logarithmi
 (LL)

pre
ision. The upper (lower) solid 
urve is for µb = mb/2 (µb = 2mb). The dotted 
urves

show the CLEO bounds.

Analyti
ally, a term of the form ∼ αs(mb) log
µb

mb
is responsible for the large s
ale dependen
e

of the bran
hing ratio BR(b → sγ) at LL pre
ision. This term dies if one systemati
ally


al
ulates the NLL 
ontributions.

NLL-Cal
ulation:

• Mat
hing: Ci(µW ) to order α1
s pre
ision.

• Anomalous dimensions: γ̂ = αs

4π
γ̂(0) + (αs

4π
)2γ̂(1) .

γ̂(1) involves the evaluation of many 3-loop diagrams.

• Matrix elements 〈sγ|Oi(µb)|b〉 are needed to order α1
s pre
ision; they are responsible

for the 
an
ellation of the term ∼ αs(mb) log
µb

mb
!
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Figure taken from C. G., T. Hurth, D. Wyler, PRD54 (1996) 3350.

The �gure shows the bran
hing ratio for b → sγ at next-to-leading logarithmi
 (NLL)

pre
ision. The band de�ned by the solid 
urves 
orresponds to varying µb between mb/2 and
2mb. The dotted 
urves show the 1σ-CLEO bounds.

In 2001, Gambino and Misiak realized that the NLL result has a large renormalization s
heme

dependen
e related to mc:

b sO2

c c

γ

LL

= 0

NLL

6= 0

g

mc enters the �rst time at the NLL-level, be
ause at LL the diagrams involving mc are just

zero. mc enters the result at NLL pre
ision. Its de�nition (mc = m̄c or mc = mpole

) is

un
lear.

Numeri
ally however, it makes a di�eren
e if one uses mc = m̄c or mc = mpole

c . At the level

of the BR this leads to an un
ertainty of ∼ 11%.

Remedy: Go to NNLL pre
ision. In this 
ase you have to renormalize mc in the NLL result;

as a 
onsequen
e you have the renormalization s
heme in your hands!

The NNLL 
al
ulation was started in 2001; many groups involved; very 
ompli
ated:
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• up to three-loop diagrams for mat
hing

• up to four-loops for 
ertain entries in anomalous dimension matrix

• up to three-loop matrix elements of Oi

NNLL still not 
ompletely �nished, but the most important 
ontributions are done.

BR(B → Xsγ)
NNLL

Eγ>1.6GeV
= (3.36± 0.23) · 10−4 .

PRL-paper, M. Misiak, C. Greub, J. Virto +15 authors, 2015.

dΓ(B→Xsγ)
dEγ

E0 ∼ MB

2
Eγ

E0 was 
hosen to be 1.6 GeV. For E below E0 there is large ba
kground.

BR(B → Xsγ)
exp

Eγ>1.6GeV = (3.43±0.21±0.07)·10−4
CLEO + BABAR + BELLE averaged.

SM-theory and experiment in good agreement! This is �good� and �bad� at the same time!

good: We have a reliable theory also in the se
tor of rare B-de
ays.

bad: Rare de
ays are potentially very sensitive to extensions of the SM. Instead of top quarks

andW -bosons other, non-SM parti
les 
ould propagate in the loop and modify the bran
hing

ratio. ⇒ �Only� bounds on new physi
s 
an be obtained from this de
ay.

5.1.5 b→ sγ in 2HDMs

Not time enough to really do it. Just a few points.

The Higgs se
tor is enlarged to 
ontain two Higgs-doublets. The physi
al spe
trum 
ontains

5 Higgses: h0, H0
, A0

, H+
, H−

.

For b→ sγ the operator basis is the same as in the SM.
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• The only 
hange in the formalism is therefore the mat
hing step:

b

H−

s

t

γ

b

H−

s

t

γ

b

H−

s

t

γ

LL NLL NNLL

g

NLL: Borzumati, C.Greub 1998

NNLL: Misiak et. al 2012

• Anomalous dimension matrix is the same; it only knows about the e�e
tive operators,

whi
h are the same as in the SM.

• Matrix elements of Oi: same 
omment.

This pro
ess leads to the most stringent 
onstraint on mH±
in the 2HDM of type II:

mH± ≥ 480 GeV@95% 
.l. .

type II: is a parti
ular version of the 2HDM; it is the version whi
h is 
ontained in the MSSM

(minimal supersymmetri
 extension of the SM).

5.2 Pro
ess B → Xdγ in SM

B → Xdγ (B → Xsγ)

Xd: hadroni
 matter, no s, no c.

Xs: hadroni
 matter with strangeness.

Underlying de
ay at quark-level:

b→ dγ

b→ dγ is loop-indu
ed, like b→ sγ.
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ξc = VcbV
∗
cd

b

W−

d

c

γ

c

ξu = VubV
∗
ud

b

W−

d

u

γ

u

ξt = VtbV
∗
td

b

W−

d

t

γ

tVtb
V ∗td

Formalism similar as for b→ sγ. But one important di�eren
e:

The u-
ontribution is not suppressed anymore:

|ξt| ∼ |ξc| ∼ |ξu| (b→ dγ) ξi = VibV
∗
id

|λt| ∼ |λc| ≫ |λu| (b→ sγ) λi = VibV
∗
is

This has an important 
onsequen
e: b→ dγ has quite large✟✟✟CP , while ✟✟✟CP is basi
ally zero

in b→ sγ.

Let us look a bit at this aspe
t.

A(b→ dγ) = ξtAt + ξcAc + ξuAu ; Ai : loop-fun
tions (5.2)

CP-
onjugated pro
ess: b̄→ d̄γ

A(b̄→ d̄γ) = ξ∗tAt + ξ∗cAc + ξ∗uAu

Note that only the CKM fa
tors get 
omplex 
onjugated.

If the CKM-matrix would be real, then A(b̄→ d̄γ) = A(b→ dγ)⇒no CP-violation.

In the SM with 2 generations, the CKM-matrix 
an always be made real by suitable �eld

rede�nitions → no✟✟✟CP

In the SM with 3 generations this is not possible anymore. → CKM genuinely 
omplex

→✟✟✟CP .

aCP
.
=

Γ(b→ dγ)− Γ(b̄→ d̄γ)

Γ(b→ dγ) + Γ(b̄→ d̄γ)
CP-rate asymmetry

Suppose that only the �rst term is present in (5.2).

A(b→ dγ) = ξtAt; A(b̄→ d̄γ) = ξ∗tAt

70



Amplitude is CP-violating, but does it lead to acp 6= 0?

aCP ∼
|ξtAt|2 − |ξ∗tAt|2
|ξtAt|2 + |ξ∗tAt|2

= 0→ no "visible"✟✟✟CP .

More than one 
ontribution needed!

Two 
ontributions:

aCP ∼
|ξtAt + ξcAc|2 − |ξ∗tAt + ξ∗cAc|2
|ξtAt + ξcAc|2 + |ξ∗tAt + ξ∗cAc|2

aCP ∼
2Re(ξtξ

∗
cAtA

∗
c)− 2Re(ξ∗t ξcAtA

∗
c)

|ξtAt + ξcAc|2 + |ξ∗tAt + ξ∗cAc|2

aCP ∼
−4Im(ξtξ

∗
c )Im(AtA

∗
c)

|ξtAt + ξcAc|2 + |ξ∗tAt + ξ∗cAc|2

aCP 6= 0 only if:

• At, Ac di�erent (strong) phases

• ξt, ξc di�erent (weak) phases

ξt, ξc have di�erent phases:
ξt + ξc + ξu = 0

0 ξc

ξtξu

aCP potentially large

b→ sγ: The same formalism, just repla
e ξi → λi:

λt + λc + λu = 0

0 λc

λt
λu
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λt, λc, λu are almost relatively real → aCP ≈ 0.

Again b→ dγ: To have observable aCP , we also need Im(AtA
∗
c) 6= 0; i.e. a (strong) phase

di�eren
e between At and Ac is ne
essary.

At, Ac, Au denote just the diagrams without the CKM fa
tors.

b

W

d

γ

u, c

b

W

d

γ
t

At : no physi
al 
ut → At real.

Au,c : no 
ut if γ is on-shell → Au,c real.

no (strong) phase di�eren
e! → aCP = 0.

Remark: An o�-shell photon with q2 ≥ 4m2
c would provide a phase (b→ dl+l−).

Swit
h on QCD:

b

W

d

γ

u, c
g

cut!

Has a 
ut and hen
e an imaginary part.
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b

W

d

γ

t g
no 
ut → real.

⇒ At and Ac have a relative (strong) phase, but only in presen
e of QCD.

aCP (b→ dγ) 6= 0

aCP (b→ dγ) = (7%− 35%) (should be updated)

The last result is obtained by s
anning over the CKM-range as of 1998 (Ali+C.Greub).

Today, the allowed CKM-range is mu
h smaller than in 1998, therefore an update should be

done.
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