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Abstract

The study of B-meson decays is an active research topics in elementary particle
physics, both in experiment and theory. By confronting experimental and theoretical
results, several parameters of the standard model (SM )lagrangian can be determined,
in particular the elements of the Cabibbo-Kobajashi-Maskawa (CKM) matrix.

An important class of B-meson decays are the so-called rare dacay, which by defi-
nition are induced in the SM only at the one-loop level. As such, they are particularly
sensitive to physics beyond the SM.

The first four lectures will be given by Christoph Greub. We will first briefly review
the part of the SM which is relevant for flavor physics. Then we will look at inclusive
tree-level decays (including QCD corrections). Then we will discuss the effective theory
formulation of B decays (effective Hamiltonian formalism, matching, renormalization
group equations and all that). We will apply these techniques for rare inclusive B-
decays.

Javier Virto will then give four lectures on exclusive B-meson decays and their
application for the extraction of SM parameters and searches for new physics. We
will start with a classification of the different processes, and explain the techniques
necessary for the calculation of the amplitudes in each case, having in mind that we are
dealing with hadronic processes, where non-perturbative effects are important. These
amplitudes will then be used in a few phenomenological applications, including the
understanding of the current anomalies in b — s exclusive transitions.
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1 Introduction

We briefly look at the experiments in which b-quarks are produced; we then look at the main
decay mechanisms of b-quarks.

1.1 B Physics experiments
1.1.1 B-Mesons produced in e*e™ collisions

BYBY ~ 50%

+_
e’e —>T(4s)—>{ BYB- ~ 50%

} T = called Upsilon

Y (4s): (bb) resonance

Vs =m(Y(4s)) = (10.5800 % 0.0035) GeV

mpo = (5.2792 + 0.0018) GeV

mpe = (5.2789 + 0.0018) GeV

mgp, = (5.3693 £ 0.002) GeV, B, = (bs)

Therefore: Y (4s) — B, B, kinematically not possible

= The experiments using Y (4s) work with a pure sample of B-mesons!
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T(4s) Experiments

ARGUS @ | CLEO @ | BABAR @ | BELLE @ | BELLE
DESY Cornell SLAC KEK upgrade

planed
stopped ~ | ~1990- ~2000-2008 ~2000- start 2018
1992 2000 2010 (7)
evidence fewx10°BB| fewx10° BB similar higher
that my | events; events; many | perfor- luminosity,
is  heavy | many in- | results on CP- | mance as | factor 50-
(through teresting violation; rare | BABAR 100 more
BB  mix- | results decays events
ing)

Also LEP (in particular ALEPH) was involved in B-Physics. This was not an experiment at

T (4s) resonance, but a high energy experiment working at the Z° pole.

b — Bt ~ 40%
b — BY ~ 40%
b— B~ 10%

b and b hadronize subse-
quently.




1.1.2 B-Mesons produced in hadron collisions

e LHCb = Large Hadron Collider beauty
Specialized for studying decays of hadrons which contain a b-quark or a c-quark.

Production of b-quarks (or c-quarks) via the strong interaction (production in pairs)

u b,C g

=g

e TEVATRON @ Fermilab is a pp machine

— Production mechanism of b- and c-quarks is the same.
B-mesons (b-quarks) always decay through weak interactions.

We therefore will first repeat the electro-weak sector of the Standard Model (SM).

1.2 Decay modes of b-quarks; terminology

e Charged current decay (Cabibbo-allowed)

Inclusive: B — X lv,; Exclusive: B — D™y,  ete.

This is a so-called tree-level decay. The b-quark decay induces the corresponding B-
meson decays.

e Charged current decay (Cabibbo-suppressed)
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Vi = (0.06 — 0.08)Vy,

Ve, @

Inclusive: B — X, vy, Exclusive: B — (m, p)lv, etc.

e Rare b-quark decays

Rare B decays, like b — sy or b — s¢™¢~ are induced at the one-loop level in the SM.
These processes test the SM at the QT level; they are sensitive to certain CKM matrix
elements.

A typical diagram is

These processes are also very sensitive to extensions of the SM, (e.g. H*, SUSY
contrib., etc.):

Terminology:

Exclusive rare B-meson decays: B — K*vy, B — K"yt~ etc., i.e. the final hadronic state
(with strangeness) is a very specific one.

Inclusive rare B-meson decays: B — Xy, B — X,utpu™ etc., i.e. X, denote any hadronic
final state with strangeness.

The theoretical predicition for inclusive decays is cleaner, because no description of the
hadronzation of the produced s-quark is needed.



2 Standard Model briefly summarized

2.1 Gauge group

GSM = SU(?))C X SU(2)L X U(l)y

The group SU(3). has 8 generators and therefore 8 real gauge bosons, the gluons Gﬁ‘ (A=
1,...8).

The group SU(2)., has 3 generators and therefore 3 real gauge bosons, W} (i = 1,2,3).
The group U(1)y has 1 generator and therefore 1 real gauge boson, B,,.

The “physical” gauge bosons Wj, Zg, A, are certain linear combinations of W,ﬁ and B,,.

2.2 Fundamental fermions

(i)

uR CR iR
dr SR br
Quarks
Ca) [ G ) 1 0)
€r, KL TL
€Rr KR TR
Leptons

The notation indicates that the left-handed fields are doublets with respect to the group
SU(2), while the right-handed fermions are singlets under this group.

Taking into account the color degree of freedom, each of the three generations contains 15
Weyl-fermions (two component objects):

15=4-3+43



2.3 Electro-weak Interaction

Gegw = SU((2), x U(1)y electroweak gauge group
The electro-weak Lagrangian L can be decomposed as
L=Lg+ Lic+ Ly + Ly -

We now go through the various pieces.

2.3.1 Part Lg

1
4
Wi, =0,W. = 0,W, — ge"WIW} i=1,2,3
B,, =0d,B, — 0,B,

1. . )
Lo = _ZW;VWWV _ B/J,VB“V

2.3.2 Part LfG
LfG = \I/Z’}/“DM\I/
with
D,V = (0, +igT"W, +ig §BM)\I] covariant derivative
U means either a left-handed doublet or a right-handed singlet, as detailed in the following:

e Left-handed Doublet, e.g. ( ZL )
L

T = 57'2 (7*: Pauli matrices)

As the gauge group Ggw is a direct product, the SU(2) generators T have to commute
with the U(1) generator Y:

[T",Y] =0.

As a consequence, Y has the form

~(12)



This means that uy,d; have the same hypercharge y.

Fix the hypercharges such that the electric charge Q is a linear combination of 7% and
Y:

Y 1/1 0 1/y 0
_g3 Lt -
Q=142 2(0 _1)+2(0 y).

2 LY 1
U:—=—=4+= = -
3 Y
1 1y 1
d:—-=—+= =5
3- 3727V 3
Analogously

D“(d)L_ (8“+zg2Wu+zg 63“) ( d)L

e Right-handed Singlet, e.g. ug

T'ur =0 (<> up is a singlet w.r.t. SU(2))
Therefore, the hypercharge assignments are

(ur)s, (cr)s, (tr)s

(dr)_2, (sr)_2, (br) 2

(er)-2, (r)—2, (TR)—2

2
D,up= (Qb + ig'gBM) ugr , etc.



2.3.3 Part L,
Ly = (D,¢) (D"¢) = V(¢)

i
where ¢ = ZO ) is the Higgs doublet (in the SM we only have one Higgs doublet). The
1

subscript denotes the hypercharge quantum number.

R |
Du¢ = (O +ig5 W, +ig'5B)o

Vi) = —M2(¢T¢) + )\(QSTQS)z Higgs potential
Ly is invariant under SU(2), x U(1)y.

The potential has a minimum not for ¢ = 0, but e.g. for the constant field configuration

0 12
¢0:(v); v = N
72 A

T
Unitary gauge: The Higgs doublet ¢(z) = < j; (z) ) can be written in the form

0(2)
o) = U (2) ( e ) |

V2

where H(x) is a real field and U~'(z) is a (z-dependent) SU(2) matrix.

Now do the local SU(2) gauge transformation associated with U(x) everywhere in the La-
grangian: The form of the Lagrangian stays the same, except that ¢ has the form

o(z) = ( e ) | (2.1)
V2

We say, that we are in the unitary gauge, after doing this gauge transformation.

The configuration which realizes the minimum of the Higgs potential is then

(3)
V2



In other words, H(x) has a vaccum expectation value, v. We therefore can write H(z) =
v+ n(z), where n(z) has zero vacuum expectation value. n(x) is the physical Higgs field.

To summarize: The Higgs doublet in the unitary gauge has the form
0
d@=<vwm>-
V2

2.3.4 Part Ly
Ly = h§; 11" ¢ &+ b G4 ¢ diy + B G pudy + hec. (2.2)
e ¢i left-handed quark doublet of i" generation
e [t left-handed lepton doublet of i generation
° q} = iT2¢*; he, h%, h* : arbitrary 3x3 matrices called Yukawa couplings

e ¢ transforms in the same way under SU(2), as ¢
— Exercise!

SU(2)r : Invariance of Lyyy is then obvious

U(1)y : Invariance of Ly, is again easy to see

lLder qr ¢ dg L ur

1+1-2=0 —14+1-2=0 | -t1-1+3=0

2.3.5 Masses of gauge bosons (W,Z-bosons)

(D,¢)(D"¢) in Ly contains terms of the form: v - v - Boson - Boson. These bilinear terms
(in the boson fields) are the Boson mass terms.

Result for boson masses:

1
Lioson mass = My WIWH™ + —m3 Z, 72" + 0- A, A" (2.3)
2 ———
Photon massles
Wi = (WLFiW?) /V2 (2.4)
Z,\ _ [ cosby —sinby w3 (2.5)
A, )\ sinfy cosby B, '



When doing this calculation, one finds that

2,2 20,2 1 12 /
v +

m%,V:gTU, m%:%, tan@wz%.

2 2 2 2 2

= my = _v4g (1+tan29W) —_Y9 _ Mw

© dcos?Oy  cos? Oy
mw = (8041 +0.10)GeV;  my = (91.187 & 0.007) GeV

2.3.6 Lj;c expressed in terms of W, Z), A,

Start with Lyc = ﬁiv“DHw and express the original gauge bosons Wﬁ and B, in terms of
the mass eigenstate bosons Wj, Z, and A,. Then write the result in the form

L¢¢ = Lcc + Lyc + Liin

CC" charged current interactions; NC': neutral current interactions

One gets
Loo = _% [éL%yLW“_ + dryuWh + h.c.} + copy for 2. and 3. generation.
Lne = —eJm AP+ —9_j070. = gsingy

cos Oy,

I = Qeeyue + Quuy,u + Qady,d + copy for 2. and 3. generation.

Jg = — Z <g£fL%fL + g};fR%fR> + copy for 2. and 3. generation. .

f runs over v,, e, u and d. The couplings 92,1«2 read gﬂR = T3(fr.r) — Q(f) sin? Oy, which
concretly means

v 1 v
ngi;ngo

e 1 c 02 e s 02
gL:—§+51n Ow; gp = sin® Oy

1 2 2

g7 = 3 gsin2 Ow; gp = —3 sin? Oy
gd:———l—lsinze 'gdzlsin29

L 9 3 Wy YR 3 W
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2.3.7 Fermion-Mass terms and the CKM Matrix

0
Start with Lyy. Replace there ¢ — ¢g = ( v ), getting

V2
Lizii = e, Mijeh + dyM{dfy + 5 Mijug + hc.
with
v
MZ = _hfj etc..

V2

For the following it is convenient to introduce the matrix notations

er, ER dL
Er=\| pur |, Er=| pur |, Dr=1| sL etc..
TL TR br

leading to
Liermion — B M¢Eg + Dy M®*Dp + U, M“Ug + h.c..
The mass matrices M¢, M9, M" are arbitrary complex 3 x 3 matrices.
Theorem: Let M be an arbitrary 3 x 3 matrix. It can always be written in the form
M = ViDV;,
where Vi, V5 € U(3) and D diagonal (with non-negative entries).

Therefore we can write

Ligmion = By VE DV Ep+...
~—— ——
B} B

D¢ is the diagonal mass matrix for the charged leptons. Ey, EFr and E}, E}, are called the
weak- and the mass eigenstates, respectively. We have the relations

E,=VFE,,  Er=V}FE}y
U, =Vvyu;, Ur = VYU,
D, =VPD,,  Dr=VYDj
Look at charged current Lagrangian Loc:

LC’C = —% [EL'VMNLW“_ -+ DL'VMULW“_ + hC}
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Leo = _% E’L%VLETNLW“_ + D’L%VLDTVLUU'LW“_ + h.c.

As we have no neutrino mass term, we can put Ny = VF N/ leading to

Lee = ——L | B}y, NyWH= + Dy, VPV ULWH + hee.
\/i S——
=yt
which implies that V = V/TVP.
v =v/vp: Cabibbo-Kobayashi-Maskawa

matrix (CKM-Matrix)
3 X 3 unitary

We get the following vertices:

W Wt

N

. S

Y

w+ w+

o
* *
Vst o Vg
We now turn to the neutral current interactions. It is easy to see that the matrices from
change of basis drop out in Lyc¢.

vV
u

This implies that there are no FCNC in the Standard Model at tree level!
— SN

flavour changing
neutral currents

For example, for the electromagnetic current of the charged leptons we get

J" = QeErvuEL+ QcErv,Er
= QeE/L”YuVLETVLEE/L + QeE}ﬂuV}?V}?E;z
= QEEL+ QEr1.Er . (2.6)

12



2.3.8 Parameters in CKM Matrix V
V € U(N); N :number of generations (N = 3 in reality)

e V has N? parameters (real way of counting)
o If V;; was real (Vi,j), then V € O(N). O(N) has w parameters

e U(N) can be parametrized by first parametrizing O(N); then one puts in phase factors

(N

at appropriate places — N? — NT_I) phase factors

Example: N =2 +— U(2)

O — < COosS «v Sin « ) 60(2)

—sina cos«

id1 ; 12

cosae sinae

U= < —sinae'®  cos e’ ) Ansatz

Condition that U € U(2): ¢1 — o = ¢35 — ¢y (+n)

From this equation we see that 3 phases are independent. This agrees with the general

formula: 22 — 2—21

e But not all of these phases are physicall (As we will see when looking at the quark
mass terms.)

e Mass term for quarks: B B
U,MYUp + D), MP D'y + h.c.
MY, M? diagonal, > 0. MY and M¢? stay invariant, if one redefines the fields according
to

U, =pPU!,  U,=PUL,  D,=PD!,  Dy=PD),

provided that P; and P, are diagonal “phase matrices™

0 elon 0 ePn
e In the new basis the charged current JEC reads:

g —
T = —EDZWMPJV*PuUz
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LeVy — (PJVPd>ij = Vije_i(ﬁi_ai)

One can choose «a; and [; such that the largest possible amount of phases in V' gets
removed.

N = 2:

Can choose 1 — aq, 1 — ag, Bs —
Po — e = (01 —ag) — (1 — aq) + (B2 — ) is then given.

— Can eliminate 3 phases. Therefore, in the case N = 2 all three phases can be rotated
away. No physical phases are remaining!

= no C'P-violation is possible in N = 2.
N general: 2N — 1 can be transformed away.

N(N —-1) N - 1) = (N—l)(N—2)'
2 2
N = 3: One physical phase in the CKM matrix V. This phase is the source for C'P-

violation in the SM.

Number of physical phases = N? —

Satement: Assume we have calculated the amplitude A for a specific decay process.
The amplitude A for the corresponding CP-conjugated process is then obtained by
complex conjugating the CKM elements in A.

Unitarity triangles

Vud Vus Vub
V=| Vg Vs Vo | €U(3); CKM matrix
Via Vis Va

Unitarity relation between 1. and 3. column:

b Vud + VaVea + Vi Via = 0

Representation of this relation in the complex plane: triangle

Phase transformations P,, P; ro-
tate the triangle as a whole. The
area stays invariant.

tz ‘/td

Exercise: Show this!
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Area J:
a= (Re(V,,Via); Im(V, V)5 0)

U

b = (Re(V,3Veq); Im(V;3Vea); 0)

27 = 1@ x b = |Im (Vi Vi ViiVea)|
Exercise: Show the final expression. Show that it is invariant under phase transformations.
There are 5 additional unitarity triangles. E.g. the one obtained from 2. and 3. column.
VJqus + chvcs + V;ZWS =0
Area: 2 J' = [Im(V,, V. Vi Ves)|
We just will show that J = J:

Reason:

Im (Vi V,gVip Vea) +

Im(VubVJchjl;VCS) +

Im(Vip Vi, Vi Ver) = 0
———

real

Analogously one can show that all 6 triangles have the same area J: This is a measure of
CP-violation.

All triangles, except the one formed with 1. and 3. column are strongly degenerate (to a
line). The most important one is therefore the one from the 1. and 3. column.

2.3.9 Parametrizations of the CKM Matrix V

Standard parametrization of PDG:

0

C12C13 S12C13 S13€
_ 10 19
V= —512C23 — $23C12513€" C12C23 — S12523513€" $23C13 )
) )
512523 — C12C23513€" —593C12 — $12C23513€" C23C13

where s;; = sin(6;;) and ¢;; = cos(6;;). This matrix is exactly unitary.
It turn out that the s;; are relatively small numbers.
= ¢;; near 1; all 6;; can be chosen in the first quadrant.

Hierarchy: 513 K 893 K S12 K 1

15



A useful parametrization, where one can immediately see the sizes of the various V;-elements,
is the Wolfenstein-parametrization:

Insert
S12 = A, So3 = A)\2, 813€i5 = A)\g(P + i)

into the standard parametrization. By construction, V' is still exactly unitary when expressed
in terms of A, A, p and 7.

Now expand in the small parameter A\ (A = 0.2), obtaining

-2 A AN(p—in) )
VWolfenstoin - —A — )\7 A>\2 -+ O()\ )
AN(1 —p—in) —AN? 1

Consider again the unitarity triangle (1. + 3. column).

Devide the relation
b Vud + Vo Vea + Vg Via = 0

by Vi3 Vea:

VisVua | VaVea  VaVia _
ViVea ~ ViVea  ViVa
~—— = =

3 1 2

Doing this in the Wolfenstein paramatrization, we get (neglecting the O(\*) terms)

AN} (p+1in) AX3(1 — p —in)
—oe Mg
—(p+im)+1—(1—p—1in)=0

~0

(p,m)

3 9 The tip of the triangle has coor-
dinates (p,n) (approximate state-
ment. )

(0,0) 1 > (1,0]

Modified Wolfenstein: Insert

AN (p + i) V1 — A2\Y)
VI= 21— A2)\4 (5 +i7)]

. _A4N2. is _
S12=A; Sp3= AN, ;3" =
into the standard parametrization.
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Exercise: Show that this implies that

~(VuaVipy)

G T

which is phase-convention independent. See PDG!

In the modified version we have

Tip has coordinates (p,7) (exact
statement!)

A large amount of data shows that the CKM picture is realized in nature. Today the fits for
A, A\, p and 7 are:

PDG 2012 A = 0.22535 £ 0.00065, A = 0.8117)9%
p= 01317992 5 = 034570013

e Measuring decay rates leads often to constraints on the modulus of specific CKM
elements: |V;|

e Measuring CP asymmetries often gives direct info on the angles o, § and v of the
unitary triangle.

Strategy: Key-word: “Overconstraining the unitarity triangle”. This means: Measure more
than necessary and look if everything is consistent.

2.3.10 Measuring some of the CKM elements

(rather detailed in PDG12; here only brief)

e |V, = 0.97425 £ 0.00022 from nuclear S-decay

e Semileptonic K-decays, Hyperon-decays

|Viis| = 0.22525 £ 0.0009
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e Charm production in v nucleon scattering

V.q| = 0.230 4 0.011

e Semileptonic D decays:

V.s| = 1.006 = 0.023

W /v
b Vaub
u
|Vip| = (409 £1.1) - 1073; V| = (4.154+0.49) - 107

Note that |V ~ 0.1 V!
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Inclusive: only the endpoint spectrum of e~ can be used for the determination of V.

ar
dE,

b — cev b — cev is much larger.

Only the energy window above
the kinematical endpoint from

b — uev b — cev can be used for the de-
termination of V.

E,

Exclusive: B — Dev, B — D*ev for V,;, and B — pev, B — wev for V.
e t{ — bW and single top production at Fermilab

average: |Vip| = 0.89 £ 0.07

So far, we did not discuss |Vi4| and |Vi4|. It is very difficult to extract them from semileptonic
top-decays.

e Vi e.g. using CKM unitarity relations and making use of |V.5| &= |Vj| =~ 1. This is of
course not a measurement, but it is interesting nevertheless:

Vs Jb +VcsV£Z + Vis {é =0
N——

small w.r.t.
2nd term

ViVl = VisVial = Vil ~ [Vio| = (40.9 £ 1.1) - 1079

Direct: b — sy

— |Vis] = (37 £7) - 1073 (one of my papers, but not updated.)
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Result in agreement with the determination using unitarity relations, but

CAUTION: The process b — s7v is sensitive to new physics! Value given assumes that
there is no new physics contribution.

e Vj, also from B, — B, mixing (see discussion in the next point).

Taking all information on |Vis| together, the PDG gives

[Vis| = (42.9 £2.6) - 1073

e V4 B — B mixing: B® and B° are not eigenstates of Hgy (w.r.t. Hoep they are)

B® and B° can mix (oscillate) into each other. This mixing is induced through second
order weak interaction.
b ¢ Vid d

B (B°,B°) mixing diagram

Rl
(=l

d

BY, BY : States (with exponential decay law) which diagonalize the mass matrix
Am = mpgo — mpg (dominated by the diagram above) is sensitive on [Vi4]!

In analogy: B? — B? mixing is sensitive on |V,].

|Vi4| in the future probably also from b — dry

w

*

b td  d

Via|PPE? = (8.4 4 0.6) - 1073
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3 Inclusive semileptonic B-decays

3.1 General comments on inclusive decays
The decay width for inclusive B-meson decays (like B — X v) can be written in the following
way:
I'B = Xy =T'b — sv(g)] + corr. in Agep/my .
- no linear corrections in Agcp/me

- Corr. start at O(Ajop/m;); they are related to the motion of the b-quark inside the
meson; their numerical effect is of order 4% at the level of the decay width. Perhaps
Javier will discuss this.

- We concentrate on the partonic piece, including perturbative QCD corrections.

Well-known: Often, the decay rate is significantly enhanced by QCD-effects.

There are large logs of the form (n gluons exchanged)

b
%
pes

! Xogo0

" 2
<%> log" % M = my, my : leading logs (LL)
s

M2
n 2
<%> log"™* % next-to-leading logs (NLL)
T

To get a reasonable result, one has to resum at least the LL and NLL terms.

Useful machinery to achieve this resummation: Construct an effective Hamiltonian and
resum logs using renormalization group equation (RGE) techniques. This is what we want
to learn in the first part of this course.

The most reliably calculable B-decays are the so-called inclusive semileptonic decays:
b—cev; b— uev.

In this case, there are no large logs; consequently, they can be calculated in fixed order
perturbation theory.

We first give the lowest order results and then discuss the effects of virtual- and bremsstrahlung
QCD corrections at order ..
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3.2 TI'(b—cev)and I'(b - uer) at lowest order

(&

7

W e
b Vb
c

Vertices:
w w
b § % c e § % Ve
— B VaL —L
Propagator:
W
H v
AVAVAVAVAVAVAVAV, 1
k ; Guv
Incoming/Outgoing fermions:
b
> u(p)
C
> u(pe)
(&
> u(pe)
v
> 'U(pu)
S=1+T,;

The decay amplitude M then reads

M =

lowest order diagram

AN
m, ) k* —m3,

(in unitary gauge)

Dirac equation:

pu(p) = mu(p)

pu(p) = —muo(p)

decomposition of the scattering matrix

<C e 5|T‘b> = (27T>4 54(pb — Pe — Pe — pI/) ﬂ(pc>7uL U(pb) a(]%)%/L U(pu> X

b kR 1 ig
g my, ) k2 —md, | V2



This is what makes the weak interaction weak in low energy processes, not the weak
coupling ¢ (g = O(e)!).

e Term ~ ’jséfy in the propagator: Can also be neglected.
w

e We put m, = 0 in the following, obtaining

M = (27)*%*(py — pe — pe — o)1

t = w(pe)yuL ulpy)u(p )y Lo(p,) (_222 VCb)

t is sometimes called the “reduced matrix element”.

t = w(pe) L u(py)u(pe) v Lo(p,) (%Vcb)

2miy,
=V
Decay rate:
1
dr = 2—W|t|22(277)454(29p — Pe — Pe — ) dp(pe)dpe(pe)dp(p,) (3.1)
__dp 0 2 =2
dp(p) = (2r )20 p=vm+p
Exercise:
d'p 2 2 0
du(p) = =50(p" —m")0(p")

(@)

|t|4: The index ¥ means to sum over spins, colours in final state and to average over spins,
colours in initial state.

After some pages of calculation one arrives at

[(m — e+ /@) — (me — /P

16mm;

dl'  64G%
dg? 19272

Vio|* [2(p69) (Peq) + ¢ pope)
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This is called the “Distribution of the invariant mass squared of the lepton pair (¢ =

(pe+p,)?)". ¢* varies in the range 0 < ¢* < (my —m?). The scalar products in this epression

are understood to be
2 2 2 2 2 2 2 2 2
my +mg —q° my —mg +q° my —mg —(q

PvPe = 9 ) Pvq = 9 ) Peq = 2

To get the (total) decay width, we have to integrate over ¢, obtaining

F — G%‘m2|‘/;b|2 (mc

199,73 ) : (b — cer,)

g(z) =1—822+825 — 2% — 242 In 2

my

g(z) is called “phase-space function”.
I" shows strong dependence on my: m}! An uncertainty in m; has a strong influence on T'!
Many other B-decays also involve my, e.g. T'(b — s7).

One therefore often normalizes with the semileptonic expression, e.g.:

BR(b — s7) = (%)th (W)mj

-

(10.49+0.46)%

Phase-space function:

e 0294002 —g (ﬁ) ~ 0.54
my

myp
It would be a bad approximation to neglect m, with respect to ms!
b — uer, :

There one can safely put m, = 0 and gets

b GhmilVal
—UEVe 1927T3
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3.3 QCD Corrections to b — cev., b > uer,

There are so-called virtual gluon corrections and gluon Bremsstrahlung corrections which
have to be combined. I do not present the calculations which in principle would be quite
interesting, because they involve UV renormalization and also how to deal properly with
infrared singularities. Please ask me for my lecture notes of a more detailed course when
you are interested in the details of these calculations.

3.3.1 Virtual gluon corrections

The bare diagrams are:

g = gluon

(@)

The UV-renormalized contribution to the decays width suffers from infrared singularities.

3.3.2 Bremsstrahlung process b — cev + g

The contributing diagrams are:

N

(a) (b)
“Only” tree-graphs, but the four particles in the final state lead to rather complicated phase-
space integrals. — Not a trivial problem at all!
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Also this contribution to the decay width suffers from infrared singularites.

When combining virtual- and Bremsstrahlung corrections, these singulaties cancel, leading
to a physical result.

3.3.3 Semipleptonic decay width in O(a,;) QCD

For the exact result see e.g. in Y.Nir, PLB221(1989)84. A good approximation the semilep-
tonic decay to order a; in QCD reads

2,5 2 9
F(b—>ce‘ﬂ+ce‘ﬂg)ziGpml’WCb| g(mc) [1—&f (%>} ,

19273 my 3T my

where the functions g and f read

g(u) =1 —8u* + 8u® — u® — 24u* Inu; Qs g—s,

Flu) = <7r2—34—1) (1—u)2+§.

m;, and m, are understood to be pole-masses; this is important to specify, because otherwise
the explicit expression for f would be different.

Numerically we have:

P
e 203, ay~02; [1 sy (ﬁ)} ~ 0.89.
mp 3 my

— QCD corrections reduce the semileptonic decay width by about ~ 11%.
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4 Effective Hamiltonian for b — cud

B-meson decays are induced through the weak interaction. In the theoretical description
(in the SM) W- and Z-propagators occur; also the top-quark can contribute in loops. The
decay amplitudes therefore depend on mass-scales which are very different: On one hand on
m;, and on the other hand on myy, m;, my. It is possible to construct an equivalent theory in
which only the “light” fields are present: b, ¢, s, d, u; 7, p, €, ve, v, v7; 77, g. We consider in
the following the decay b — cud for which we can explicitly illustrate the essential features
of the construction of the effective theory.

4.1 Tree-level

k= O(my) < my = can expand the propagator in the momentum transfer k.
pv _ kMEY

q m%v g,uz/ ]{72
k2 — m2 - m2 +0 mh
w w w

The amplitude can then be written as

12 1 - 1 1
A=-L [—2 (dyuLu)(ey"Lb)] + — (dim 8 Operators) + — (dim 10 Operators) + ...| Vo Vg
myy My My

The dimension 8, 10, ... operators contain the same fields as the dimension 6 operator. In
momentum space they contain powers of k, i.e., powers of external momenta. In position

space these momenta correspond to derivatives. All these operators are local operators.
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Operator product-
expansion

(OPE)

local

non-local

The amplitude is dominated by the operator(s) of lowest dimension. Higher-dimensional op-
erators are suppressed by inverse powers of my,. We only will need the contribution(s) of the
leading operator(s), i.e., with lowest dimension. From the amplitude A we can immediately
read off the effective Hamiltonian.

2
im 9 * 1 7 =
Hgff 6= o VebVud o~ (d%L u)(ey"' L bz
%/—VV/ ope;;tor
prefactor

The prefactor is determined in such a way that
(cud| — iHeg|b) = A.
g? is often written in terms of Gr; the connection is

i 4\/§Gpm%,v < defines Gp .

. 4G
Hg™® = —\/§F Vip Vg G20

Oy = (dy,Lu)(@y"Lb) < is simply called Oy in literature
Cy =1 < Wilson coefficient

Remark: We “contracted-out” the W-field in the sense of the Wick-theorem. We then expand
the corresponding propagator. The analogous thing in the path-integral formalism would
be: Integrate over the W-field. After this step a non-local action results. The subsequent
OPE then leads to the same local Heg. See Buras hep-ph/9806471, p.53.

Remark: We will see that the Wilson coefficient 'y, = 1 gets modified by QCD effects.

4.2 QCD-effects; principle comments

We now want to consider QCD corrections of order o = % Ts it still possible to expand

AT
the W-propagator?
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e 1no problem in the diagrams

Depending on the value of the loop-momentum, large or small momenta flow through the
W-line: Split loop-momentum into two regions:

| | |
(1) 0<|l] <A - A
(II) A< |l < o0 b "

Choose A such that m, < A < myy.

Region (I): Can expand the propagator; we only keep the leading term in 1/m%,. The
calculation then boils down to working out the following diagram:

Os g

—> o] < A

Region (II): External momenta are small compared to the my-mass and the loop-momentum.
One therefore can expand in the external momenta. Leading term corresponds to p;=0.
Higher powers in p; are suppressed by ( nfév )? <> higher-dimensional operators. Therefore we
can simply put p; = 0 in this region.
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— The momentum dependence of the decay amplitude comes from region (I), i.e., from the
diagram shown there.

— Non-trivial my-dependence, which is not of the form 1/mj,, comes from region (II). This
one manifests itself in terms of the form In = as we will see.

The result of the QCD corrected decay amplitude b — cud can be written as

A = (cud| — i HE™ °|b)

4Gy
V2

O1 = (dyyuLug) (@' Lbs) v, B : colour indices

02 = (da”yuL ua)(éﬁfy“L bg)

Heg™® = —=VaVi[CL(M)O01(A) + Ca(A) O2(A)]

O1(A), O2(A) means that one cuts off the loop momentum at A when calculating their
matrix-elements. The matrix-elements (cud|O;(A)|b) and (cud|O(A)|b) completely contain
the physics of the small momenta, in particular the dependence on the external momenta.
The Wilson coefficients contain the dependence of the masses of the heavy particles which
are integrated out (here: the WW-boson).

A~ Cy(A)  (O2(AN)) + Ci(A) (O1(N))
~—— S — —— ——
(C3+Cha0) (MI T an) (O +Cias) (MP M an)£0(02)

In practice one fixes the Wilson-coefficients in such a way that one calculates the decay
matrix element (or the corresponding Greens-function) in both, in the full theory and in the
effective theory. In the full theory one integrates over all loop-momenta. In the effective
theory only over those with |l,| < A.

The Wilson coefficients can then be fixed by requiring that the results are the same. This
“fixing” is called matching.

Suppose we only want to fix the Wilson coefficients, i.e., we are interested in the matching
calculation only. As the Wilson coefficients do not depend on the external momenta, the
matching calculation can be done for a suitable configuration of external momenta, for which
the calculation becomes as simple as possible.

Remark: The explicit cutting-off of loop-momenta is convenient to understand the principle.
Technically, however, this procedure is very cumbersome. Instead one can integrate in the
effective theory over all loop-momenta (just using the dimensionally regularized version).
The dependence on the external momenta is the same. The difference is in momentum-
independent terms. This means the that Wilson coefficients CI™ ™ and Cj(A) differ by
those terms. But the product C;(O;) is the same in both schemes.
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— The product C;(O;) is the physical object, not C; and (O;) individually.

Remark: In dimensional regularization the “renormalization scale” u (or i = pe¥®/2/\/4x)
occurs. It turns out that the logarithmic dependence on g in the dimensional result is the
same as the A-dependence in the cut-off procedure. One therefore can say that p also serves
as the separation scale between large and small loop momenta.

Exercise:

d
’ ﬁu*/ dip 1
(2m)4 1% + ]2

J / d*ly 1
2 p—
iz<a (2m)* 2 4 C)2
Show that the coefficient of In A in I and the coefficient of In 2 in I; coincide.

In the following chapter we will explicitly do the matching calculation, i.e. the extraction of
the Wilson-coefficients Cy(u1), Co() at order a, = ¢g2/47 in QCD.

4.3 Matching of H.g for b — cud at O(ay)

Heff = %
Or = (davuLug)(@7"Lbs), Oy = (dayuLua)(s7" Lbg),
C’l(u) = O—l—? Qg C’g(u) = l—l—?Oés .

Vep Vol C1 (1) O1 (1) + Ca(p2) Oa(p)]

a) Full theory
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(f)
(d) (e)
As the Wilson coefficients only depend on the masses of the heavy particles (and pu), we
choose the quark masses to be zero and the external momenta identical (all = p), with
p? < 0. Disadvantage: One looses of course the explicit check that the Wilson coefficients
indeed only depend on the heavy masses.

Why don’t we choose p = 07 Just to avoid collinear and infrared divergences! We only will
keep p? as a regulator of such singularities. In terms where p? does not serve as a regulator,
we will put p? = 0.

Remark: Actually, we should take into account self-energy diagrams in addition, together
with their counterterms.

These self-energiy contributions appear exactly in the same way when we will calculate
the matrix elements of the operators in the effective theory. Therefore they will give no
contributions to the Wilson-coefficients. We therefore can omit them (of course in the full
and in the effective theory).

Remark: The counter-terms to the vertex corrections we do take into account:
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At the cross in the vertex
we have the renormaliza-
tion factor (Z; — 1), where
Zl = Zgb ZQC Zg (Wlth
Zy,=1).
(9)

(h)

As an example, we consider diagram (b); then we will give the result for the sum of (a)-(f).

Calculation of diagram (b): b+u — d + ¢

Box-Diagram
must be UV-finite. Why?

b ¢

e (_ ig )2(_1. i / i1 [dy,L(—] — pyraT ] [y L(L + p)y°T )

vz i) B Qe B -y
TA = 22 = colour matrix
CKM factors omitted; they will be restored in the final result.

Feynman-parametrization:

1
- = 2 X
a?be /0 dy dz Gy l[axy + by(1 — z) + (1 — y)]*

a=(+p?=7+2p+p* |y
b=1—m} =12 —mi, y(1—x)
=1 =1 (1-y)



azy + by(1 — x) + (1 — y) =1* + 2lpzy + p*xy — miyy(l — )

=(l +pry)? - C
C =mjy(l —z) — p’ey + p’a’y?

[ — | — pxy shift. Then put p = 0 in the numerator, because p # 0 only used as
regulator.

[o] Lo, Ane

— o 4 2
— A = =2y, LygyaT4u) (€9 Ly 7 T40)L [ 6yPo ol b

YVuLysYa @ Y LAPy* = 167,L @ v*L  identity (at least in d = 4)

' P
@m)* [P =T

AN = 126262 (dry, LT u) (ey" LTb) /yzx dx dy

(Cza'VuLT Buﬁ)(c’ﬂ/ LT 566) %(da'VuL ua)(CB'VHL bﬁ) %(da'VuL uﬁ)(CB'VuL ba)

Used: T5T45 = =53~ 0a0vs + 500508,

A{f)ull 12g |: Sl - —52:| f

Sl = <Ol>tree
S 02 tree

f= / C]4d:c dy
¢ = mwy(l - ff) —pPay(l — xy)

v\ 1
f= /dxdyy:c<487r)c

i Ty
= — dz d
/ 4872 / ym%v(l — ) —p?x(1l — xy)

For p2 = 0 the integral would be divergent at z = 1.

1 —p? 1
f=— {ln <_p) — 5} + terms which vanish in the limit p* — 0.

2 2
967r mW miy

The final result for AM! reads

4( ;F ag |1 1 —p? 1
full _ to 2 N
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Sum of diagrams (a)-(f):

2

AG . as (1
Apa = —ZTQFVcb ud {(1 + 201?@ (E + hl_'u—p2 + 01)) So

2 2
+ 39 (lnm—mg —0—02) Sy — 3% (lnw ‘|—C3) Sl}
41 —p?

N 47 —p p
4
Sl = <Ol>tree§ 52 = <O2>tree; C’F - g; Nc = 3; C1, Co, C3 are numbers.

1. line: Diagrams (a)+(d)
2. line: (b)+(c)+(e)+(f)

Effect of counterterms (g)+(h): They exactly cancel the 1/€ in A, above.

For the renormalized result in the full theory we get

ren 4GF * Qg ,u2 3 o m%V
Afull = _Z\/E‘/cb wd {(1_‘_201?@ (ln_—p2+61 S2+NCE ln_—pz—|—02 So
2
Qg mW
_3E (hl ——p2 + 03) 51:| .

We now calculate the same amplitude in the effective version of the theory.

b) effective theory

O, and O, insertions

U d
b /\ c

(a)
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(d) (e)

For illustration, we work out again diagram (b) with O; and O, inserted. We anticipate that
there will be divergences and therefore work in d-dimensions.

ol AU (dL(=] = )T ) (@ L + p)yTD)
<02>b —zz;(—zgs) 2 /(27r)d (l+p)2(l—|—p)2l2

(f)

1 /1 2z
— = dz
a’b  Jy  Jax +b(1 —2)]?

a=(I+p?=0F+2p+p* | x
b= 12 _ 2 (1—2)

laz 4+ b(1 — 2)] = I 4 2px + p*x =(1 + pr)* — C
C=—p’z(l —2)

Shift [ — [ — pr; again we omit p in the numerator, because we are interested in the limit
p— 0.

1 d?l 12 -
_ s 2-2€ A — B oA
(O9)p = 1g5[ g/ GriE = O 2xdm£dfyuL75%T w) (et LyP T b),

IG(nyuLTA;;(E'yMLTAb)

To get the term under the braces, we used a 4-dimensional identity. When applying it, one
correctly gets only the 1/e-pole and the term log . The other terms, however, come out
wrong. How to reduce

YuLygYa ® VLA
in d dimensions, depends on the choice of the so-called evanescent operators. We will see,

that one needs to a good approximation — the so-called leading logarithmic approximation
— only the log u terms.
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Only when going beyond leading-log, the business with evanescent operators becomes rele-
vant. So we get:

1 d’l 12 1 1
_ 27 =2 - -
(Oa)p = iga 7y P / Gr)i E =T 2xdr 16 [251 652}

J

-~

. 1 2
Ton2 e Tin 2 5 +7]

2

2
__ 9% 4|1 1 1 z ?
(O2)p = —167T24 [551 — 652} -+ ln—p + .

depends on
choice of
ev. operators

Calculation of (Oy);, similar. The result of the sum of all diagrams (a)-(f) reads:
1 2 3 as (1 e 1 e
0= (142002 (= +m L — = In — —3— In —
(Oy) < +2Cr e S1+ gl Gl Sy 347T T Sy,

2 2 2
Qs L 3 oas (1 Iz I
05)" = (1 +20p—2 In—) ) S+ —— In—) 5 —3— In— 5.
o= (o (o ) 2 (Lo ) (o)
The index ° means: unrenormalized matrix elements, i.e., really just the contributions from
diagrams (a)-(f).

As in the full theory we now do the renormalization of the quark fields (and coupling con-
stants) in the lowest order contribution, i.e., one takes into account the corresponding coun-
terterms.

In our case only the renormalization of the quark-fields is relevant (no other fields or coupling
constants)

Z _1——0—
2 A F

The counterterm contributions then are:
(Oa)finias = (Z3 —1)(Os)",
<O >ﬁelds - (Z2 - 1)<O >tree .
——

starts at
order ag

One sees that these counterterms just remove the first 1/e-pole which appears in (O;)° and
(O9)°, respectively.

After the renormalization of the quark fields one has

2 2 2
quark field - 3 Qg 1 M Qg 1 M
<01> = < 2CF ln ) Sl N 4 < + In —p2) Sl 347‘(‘ <€ + In —p2 Sg s
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quark field

2 2 2

g ,u 3 Qg 1 ,u Qg 1 ILL
O rem = (1420p—In—|Soy+——|-+In— )% —-3—=(—-+In—|5;.
(Oq) (‘l’ F47Tn—p2) 2+Nc47r<e+n—p2) 2 47T<E+H_p2) 1
— Still divergent after quark-field renormalization!

— the local operators O; and O, are singular objects. Additional renormalization is needed,

called “renormalization of composite operators”. We introduce new operatos O}

__ r70p ren

We choose the fo such that the matrix elements of the renormalized operators O1% become

finite.

We do the operator renormalization in the MS-scheme. The 2 x 2 matrix Z° can easily be
read-off:

As Z° is a matrix, one says that O; and O; mix under renormalization: “Operator mixing”.

After operator renormalization we have our finite result for (O7"), (O%"):
2 2 2
as ,LL 3 as /uL Ofs ILL
o) =(1+2Cp—In— | S+ —=——Ih—S5, —3—In—S

(o) ( * F47Tn—p2) 1+Nc4wn—p2 ! 47Tn—p2 2
2 2 2
ren\ __ s I 3 M Qg ol

<02 > = (1 + QCFE 111_—])2) SQ + ﬁcﬂln_—lﬁSQ - BE 111_—])251 y

Sl = <Ol>treea S2 = <O2>tree .

The renormalized amplitude in the effective theory then reads:
4G
V2

We now impose the matching condition:

ot = —1{He) = VenVia [C1O1™) + Co(O5™)]

ren ! gren
efft = “*ull -

The comparison of the coefficients of S and Sy leads to the Wilson coefficients C; and Cs:

2

Q m
C = 3—"In—2%. C =14+ ——In—+.
1(w) o 2 >(1) + Noar " m

Remark: They do not depend on the external momentum p?, as expected.

38



Notice: We only worked out the p-dependence at O(a,). We did not calculate the con-
stant (i.e. p-independent) terms. The latter would depend on the choice of the evanescent
operators.

From the explicit result

2
g, m
Ci(p) = _BE In M—ZV; Co(p) =1+ ——1In—-

we see that the Wilson coefficients Cy (1), Co(1) get large logarithms when choosing p ~ my,.

One the other hand p is an arbitrary scale. Why should we put g ~ m;? When choosing
i~ my instead, then the log’s in the Wilson coefficients would be small!

We have to take into account, that the physics is not only contained in the Wilson coefficients,
but also in the matrix elements of the operators!

The effective operators only contain the light fields, the heaviest one is the b-quark in our
application. The matrix elements of the operators also depend logarithmically on p:

<0172> ~ In ﬂ .

m

m is the mass (or external momentum) of a particle which occurs in the effective theory. m
is therefore typically of O(my) and certainly not my, (or my).

When choosing i1 &= m;, then the matrix elements are free of large logs. In this case, however,
the Wilson coefficients contain large logs.

When choosing p ~ my the situation is just vice-versa.

= No free lunch! Large log’s are simply present! These large terms have to be resummed
to all orders. At p =~ m,; these log’s are in the Wilson coefficients.

In n-th order (n-gluon exchanges) the leading term of the Wilson coefficients is of the form:

Oés(/,l,b) ! nm%/V
( A ) In ,U,—I%’ My = O(mb)

These terms are called “leading logarithms (LL)”.

The so-called next-to-leading logarithms (NLL) are of the form (again n-gluon exchanges):

(as(lub> ) " 1nn—1 @ )

A T
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What did we actually calculate so far when using this language?

as(m) | miy 3 as(m) , miy
Ci(w) = —3 In—2: Cy(py) =1+ — In — W

S0: 0 gluon contribution and 1 gluon exchange explicitly calculated. For both, n = 0 and
n = 1, we are at LL precision.

In the n = 1 calculation we mentioned that the Wilson coefficients contain a term without a
logarithm. We did not calculate it, because we didn’t want to enter the business of evanescent
operators. The result, e.g. for Cy(up), would be of the form

3 a, 2 s
C2(Mb):]-+_a (:ub)l My _I_C_a(:ub)

N. A4r s 47

, where ¢ is a number.

The added term (proportional to ¢) is a NLL term and therefore less important.

In the following we want to consider the resummation of the LL-terms to all orders in per-
turbation theory.

Before really doing so, it is convenient to systematize a little bit the renormalization issues
in the effective theory.

4.4 A different look at operator renormalization

We try to systematize the renormalization in the effective theory. In particular, we want to
implement the counterterm formalism concerning composite operators.

As a first step all quantities in Heg are understood to be bare quantities, i.e. the fields,
the couplings, the masses if present. In particular, the Wilson coefficients are treated like
coupling constants, i.e., as bare quantities at the starting point.

AG R
V2
At this level the operators are composed of bare fields, as the notation indicates. We now
write ¢°¢ and CP# in terms of the corresponding renormalized quantities

Hog = CP*® O;(¢™*) ; VeV, omitted

T 71/2 T 7¢C
qbae — Z2/ q; Cba,e — Zijcj'

7

The renormalization of the Wilson coefficients replaces the renormalization of the operators.
Heg = 73 ij C,;0;
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O;: now contains renormalized fields.

He = Ci0; + (22 Z5 — 65)C,0;
N————

starts at O(as)

Vv
— counterterm

In this formulation the renormalized matrix element ASF' can be compactly written as

ot = —123 Z;C{0:)°
where (O;)? is regularized matrix element and where Z2 ij contains the counterterms.

In the old formulation (where we were speaking about operator renormalization), we had for
ALF in compact notation:

o = —125(Z27); Ci{03)°
Exercise: Convince yourself that this is true!

Compare the results of the two formulations:

= ij - (ZOP)]._Z.l A VA matrix notation

_ J1 /3 =3
Zczl—a——(Nc i)"‘@(@i)

dre \=3 o

Moral: Either the operators or the Wilson coefficients get renormalized, but not both!

4.5 Renormalization-group equations

The final goal is to derive a differential equation, which governs the p-dependence of the Wil-
son coefficients C} (1) and C(p): Renormalization-group equations for the Wilson coefficients.

In order to solve it, we have to know how gs(u) depends on .
As in many situations the operators contain mass factors m(u) (besides the fields of which

they are composed), we need to know also the u-dependence of the masses.

4.5.1 Running coupling g(x)

We are only interested in higher order (QCD-effects. We start with the QCD Lagrangian,
which at the beginning is expressed in terms of bare quantities.

Occuring quantities: gPar¢ mbare ypbare AA “where i = u,d, ¢, s,t, .
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[ghare] = (mass)% = (mass)*; (d=4—2e¢)

We express the bare quantities in terms of the renormalized ones:

bare __ , €7
gs =W ng s
bare 7
m; " = Ly, m;
etc.

We construct the counterterm Lagrangian and fix the various (Z — 1)-factors in such a way
that the Greens-functions get finite when taking into account the counterterms.

The scale ¢ was not there in the original formulation; we introduced it in order to have the
renormalized coupling g, dimensionless.

Physics should be independent of the choice of p! This only works when we accept that g
depends on p in a very specific way: gs(u)

d bare __ 0

(1) ,u@gs = (obvious)

Call g5 = ¢ in the following (just to simplify the notation).

Consequences of (1):

d bare __ , 7 1 € _
e uwm g9(1)] =0
0::euf_yg(u)4—u50¢3—22)9(u)%-ue_gUigﬁg(u))
d 1 d -
Mgﬂ@) —am—ijgwgmm>
—iA(g(n),€)

B(g,€) = —eg + B(g)

mm=—¢i<d2>

Z, N@ g
The renormalized coupling g(u) is finite for € — 0, consequently also 3(g).

In the MS (MS) scheme, the Z-factors depend on p only via g(u). They have no explicit
pu-dependence. Furthermore, they are also independent of masses.



. 8_9’1
Claim: f(g) = gzg—g

Note that k is always 1: in each order in g only the 1/e-pole counts for the S-function!!

Proof:
1 d -
- —g—(u—2
B(9) ng(udM 7)
_ 1 dg 0Z,
Blg) = QZg (udﬂ) 29
~——
B(g,¢€)
_ 829
ZyB(g) = —gB(g,¢€) 99

7 7 1072 107
Blg) |1+ 222+ 222 4 | = —g Ble,g) = |22 + - =22
€ € ~—— € | Jg e 0Jg
—ge+B(9)

82971 102972 1 _aZg7l 1829,2
dg +e g +} gﬁ(g)e | Jg +E dg

7 7
B(g) 1—|—i’1—l—i’2—l—... :g2
€ €2

Equate the e’-terms in the above equation:

07
_ 2Y4g1
—Blg) =y 9
So we have:
d 0Z _ Z Z
p——g(u) = —eg + B(g): Blg) = g° == with Z, =1+ =224 2024
du dg € €
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For the following, we need Z, explicitly. To fix Z, at order g2, we can look e.g. at the
one-loop QCD correction to the following tree-vertex:

Q
<

1-PI vertex correction diagrams:

Requirement: Diagrams + counterterms Zfinite

— fixes the combination ng — 1.

Need to work out Z4 (and Z,) before we can fix Z,.
But we just give the result for Zg.

Result:

2
_ @2 11 211 \
Z, =1--% | 2N, —Zfl =40

The terms proportional to g2 correspond to 1-loop corrections, etc. Z,, is known up to four
loops!
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f: Number of flavours which run in the fermion-loop.
N.: Number of colours (N, = 3).
Exercise: Which fermion-loops are meant?!

Summary:

20250 5 (295 [11 2 5
6(95)_93 ags _gs <167T2) |:6NC 6f:| +O(gs)

3
6(98) :N /golg:r2 51 (}lﬁﬂz 52(167T2 )
ﬁo— — N2/, 5—33Nc2 3 Nef —2Crf; Cr=3
=4

3 5
,u@gs(,u) = B(9s) = —Potgz — Prigepze —
Equation for Ozs(,u) o (p) = gZ(:);
M%QS(M) — _2ﬁ047r 251(04

The last line is called “renormalization group equation (RGE) for a4(u)”.

Solution of the RGE for a,(u)

We only keep the leading term of the S-function.

d _ _op W)
P = =20

— Ordinary differential equation of first order. Need one initial condition: o (po)

Put: = e t=1Int

Ho
d dt d_d
Fan — du dt di
4oty = =280 ot = 0)2au ()
dt S — 47'(' 3 g — g ,UO
as(t) _ 25
a2(t) 47
/t ds(t/)dt’ __2%5
0 ag(t’) 47
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s |4 0) 4
1 1 25
as(t)  as(0) A
1 1 Bo
=y
D) an(0) " 2m
an(t) = %0
1+ gas(O)t
or
as(:“’O)
as(p) =
1+ g—fras(,uo) In “io

(4.1)

In high energy processes it is favorable to choose u = E, where E is the characteristic energy
scale of the process. When choosing a p-value, which has nothing to do with the relevant

energies of the process, the predictions contain explicit ln% terms which are large.

— A convenient choice of p absorbs these logarithms into as(p) — better behaved pertur-

bation theory.
Energy larger — p larger; 8y = % ~ 0.

as(p)

[
Ho H

From the LEP precision measurements done at the Z-pole, as(myz) was extracted:
as(my) =0.118 £0.003  (MS, f =5).

We will use this value as initial condition of the RGE, i.e., ug = my.

Expand eq. (4I):

2
as(p) = as(po) |1 25_;%(#0) In % + <2ﬁ_70r) a2 (po) In? % + ...
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— leading logarithms (LL) resummed!!
If we had taken into account the next term in the S-function, i.e. the one involving (;, then
the RGE would also resum the next-to-leading logarithms (NLL).

4.5.2 Running masses

The bare masses mP¥® and the renormalized masses m; are related according to

me = Z,,.m; (we skip the label 7)

Z,, has an expansion in powers of g (and in inverse powers of €), like Z,. Again the bare
mass m"® is independent of g. This only works if the renormalized mass m is p-dependent:

m(p).

d -
_ bare __ ,, %
0= pr-m —udM[me(u)]
d - _ d
0= (M@Zm) + Zm(,u@m)
d 1 d -
< - (7
—_———
=Um
d 1 d -
udum(u) Y m();  Ym 7 (udu m)

Like Z,, also Z,, depends in the MS (MS)-scheme on y only via g. Similar to the derivation
of 5(g), one can show that

(g) = g 2ms
Tm\g) = —g dg

(Zm =14 302 5 Zmk)
Exercise: Show it!

The renormalization factor Z,, to order g2 reads:

_ 2

o o gs § 4y . _é
Zm = 1 1672 CFE —|—(’)(gs)7 (CF— 3)

29,
1672

= Ym = —Gs < Cr 3) + O(g;)
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«
m=—6Cp+ O(a?).

Generally, 7, has an expansion is a:
@ s\ 2
_ % ( ) M4
m = Y T i 4r) Tm *

97 10
T =6Cr; AW =Cp <3CF+§NC—§JC) :

To summarize: The renormalization group equation for the running mass m(u) reads

ugmwn:—%@w»mw>
ol

Solution: At = py we impose the initial condition m(uy).

(1) /
m(p) = m(pug) exp [— / (9 u) dg’ Vg(iﬁ))] (exact expression!)
glro

Check:
@) = e - o] @
han (1) (110) By " dug(u)
k) B(g())

pgem() = (a0 min) (oK)

Solution when using lowest order expressions for the - and the 7,,-functions:

1

as(u))] o

A (NO)

) = miyo) |

Exercise: Show this!

If one expands this formula, one sees that also here the leading logarithms get resummed.

— Next: RGE for C(u) and Cy(p).
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4.5.3 Renormalization group equation for C(u), Co(p)

Starting point:
b _
Cz‘ are __ chng

Cchae — Z°C' (matrix notation)

d - d -\ = - d -
0=ng 0 = (“@Zc) crz (’%C)

d = - d -\ =
—C=—(Z)" p—2°)C
" (Z°) (udﬂ )
Definition:
. sov—1 [ A 5, : : .
A =(ZP) ,ud—Z P anomalous dimension matrix
1
VAL :[(Zc>—1]T
_ d -
—(7¢ T,A&6 ze 17T
4 (2 ()
d - - d
AT " (r7e—1 ¢ — _(7¢ -1 —ge
i = (g2 2 (e
dC .
— —C =ATC
dp
Solution: C'() = U(p, o) C (p1o)
- w49
U, pr0) = Ty exp / dg’ Bg") : evolution matrix
9(po) 9

4 from Z°:

_ =1 - —
ZP =1+ Z E—kzgp(g) ;  p-dependent only via g(u) in MS (MS) scheme.
k=1

Exercise:  §(9) = —95,

49



- 9(n) 9% 0T L O g
U(p, pto) = Ty exp / dg’ (16727 (9")]
g

o) [—Boibs + O(g%)]
A [ () 0T ,
Ulp, o) = Ty exp / dg'——[1+ O(g")]
g(to) Boyg

at lowest order:

A _ 20T rg(p) dd’ _A0T
U(p, pto) = exp [ ;0 / _g/] = exp { ;0 In g(,u)]
g

g (Mo)
) = exp | g 240

Diagonalize 4°7, i.e. find a matrix V such that

P =VapvTh with 4%, diagonal.

- (il

5(0)

U 9 = —

D

7O = diag(4%). Explicitly V and V! read

_ L1y 1o/
V_ﬁ<1 —1)’ v __2(1 —1)'

Using this, we get




1IN, - 2f

Bo f=5 (u,d,c,s,bX).

3 )
Note that the top quark ¢ is integrated out.
23
=0 = 3
7(0) = (47 _8)
6
A 723 0 _ O‘S(NO)
U =V o |V =
(:ua ,UO) ( 0 7"2132) ) r Oés(,u)

1 r% —+ 7“727%52 r% 7’%
U(M,Mo) =3 < —12 6 12) .

6 —12 6 —12
2 \r23 —ra2 gy 4ras

= pw (= )

e The Wilson coefficients do not contain large logarithms.

e The matrix elements of the operators have large logarithms.

= o (= Om) :

e The Wilson coefficients contain large logarithms.
e The matrix elements of the operators are free of large logarithms.

= Do matching at p = pw : C;(uw) 25K Wilson coefficients at =ty : Ci(p); i.e.

=

-

é(ﬂb) = Uy, ptw) é(ﬂw)

N
U, piw ) = contains (as(,ub) In ‘%’) in resummed form.
—_— b

~

c (uw) @ as-corrections “small”) no large logarithms — At LL-precision, it is not even neces-
sary to calculate the ag-corrections at p = pyy!

Therefore: Cy(puw) =0 and Cy(puw) = 1.

At the scale p1 = p;, we then have

1

Cr(p) = 5 [n°% =0 2] 0 Ca() =

5 [n6/23+77—12/23] :

(NN

ol



with 7 = as(uw)/as(w); The running ag(p) reads

as(mz)

1-— ﬁo—asgzz) In %

() = . ag(my) = 0.118 +0.003, my = (91.1867 % 0.0021) GeV, (LEP-I).

Exercise: We previously calculated C;(u) explicitly in order «y precision; in particular we
worked out the agln p-term. Expand the resummed result and show that the agInpu term
indeed coincides.

Example: Choose the matching scale puy = my = 80.4 GeV, u, =5 GeV.

Ci(mw) =0;  Co(mw) =1
C1(5 GeV) = —0.221;  Cy(5 GeV) = 1.093
las(mz) = 0.118;  as(mw) = 0.120;  as(5 GeV) = 0.203]

4.6 Summary

Heg for b — cud  (or bu — cd)

4G -
Ho = = 72 Vs [C1 ()01 (1) + Cal) O]+ it S:1—operators

i = pw: Do the matching, i.e. fix C;(uw ), where puy is of the order of myy.

Do RGE-evolution; U(ub, pw) is at work in this step

Y
p = pp: Ci(up) are obtained, the large logarithms are contained in C;(u) in resummed form.

It remains to calculate the matrix elements of the operators: (O;(1)):
This is the most difficult problem, because non-pertubative in general!
e For inclusive B°-decays: B° — X,

X, : hadronic final state with charmness=1
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As my > Agep (Agep ~ binding energy in the B%-meson): The hadronic matrix
element is dominated by the quark transition b — cud:

2

_ A2
I'(B° = X,)=T(b— cud) + O ( QCD) .
——— my,

dominant contr.
worked out:
<4% correction

e For exclusive decays: B® — DTn~
(D*7=]0;(1)| B®) not calculable from first principles! Lattice not ready yet.

Factorization Ansétze, other models.

Usually, for inclusive decays the perturbative corrections are more important than the power
corrections of the form A% /m;. We now state what is needed to calculte the inclusive decay
width in leading-logarithmic (LL) and next-to-leading logarithmic (NLL) approximation.

LL approximation:

e Matching to order a? precision.

e RGE with 4 = Zl_:ﬂ((]) _I_W_I_W_I_

e Evaluation of the matrix elements at the scale y;, to order ! precision.

NLL approximation:

Each of the three steps needs to be improved by an additional power of as, i.e.,

e Matching to order o precision.
e RGE with 4 = Z_;'AV(O) + (%)2&(1) ‘I'W—l-

e Evaluation of the matrix elements at the scale p;, to order a! precision.
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5 Effective Hamiltonian for AB = AS =1 transitions

\\ . \\ u
N‘/(b‘/(t ~ ubVJg

o) o)

A : Wolfenstein-parameter A =~ 0.2 ; neglect the u-contribution.

Va Vs + VaVis + Vi Vs =0 (exact due to the unitarity of CKM matrix)
= VoV = =Va V-

In analogy to the case b — cud, diagram (a) gives rise to the following operators:

HEG = 52V V2 [CL(m)On (1) + Cai)Oa(p)]
N——

Vi Vis
O = 547vuLcg cgy* L b,
Oy = 547yuLcq cgy" Lbg

The Wilson coefficients C(u), Co(p) are the same as those for b — cud.
O, and Oy are called current-current (CC) operators.

Note that there additional operators (for AB = AS = 1) generated by QCD:

Peguin-diagram

There are two form-factors in the limit m, — 0:

o4



~ [ q Y — qu LTAb)] Fiq(mtamW>

+ [ mB) T - ) )

The first structure leads to a local operator when attaching “the feet” of the penguin:

_ 1 _
5(0* . — qud) LT z T 4q
——

from
gluon-prop.

= (SWXLT%)}{(W“TAQ)

= (57, LTD)(qy"1Tq);  q € {u,d,c,s,b}

Exercise: Why did we “ignore” the contribution from g,¢ in the equation above?

Lorentz structure: Decompose the result w.r.t. Land R: 1=L+ R.

Colour structure: Decompose the color structure by using T;‘BT% = _2_11\&50!5575 + %50455% )

By doing these decompositions, four operators are generated, the so-called QCD-penguin
operators Os, Oy, O5 and Og:

03 = (gofyuLba) Z(QBVML(]B) )

q

O = (5a7"Lbs) Y (@s7uLaa)

q

05 = (Sa’yuLba) Z(QBVMRQ5) >

q

O = (507" Lbs) Y _(as7uRda) -

q

The structure proportional to F3 in (5.I) leads (in position space) to the operator (ms = 0)

Og o RT Bbﬁ G;j,/

Js
1672
QCD has generated the operators O3 — Og and Og. In a similar way, also the electro-weak
interaction generates new operators:
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~ (504" = quf) Lb] FY (my, mw)
+ [5(i0,,¢"my R)D] Fy (my, mw)

The structure proportional to F leads to the operator
e
1672

The first structure (~ F}') leads again to 4-Fermi-operators, when attaching the feet of the
penguin.

Or

my §aO'MVR ba ij .

When exchanging a Z instead of a v, also a local 4-Fermion operator is generated which is
of the same order: Gra

w

In this order, there are also W-boxes, which lead to 4-Fermi-operators:

%7/\/\/\/\/\/\/
d,s,b d,s,b d,s,b E,S.b



The four-Fermi operators, which are generated through ~, Z°, W¥ exchange, are called
electro-weak penguin operators. They read

Oy = 5(8a7uLba) 3=, €4(Gs7" R qp)

Oy = %(ga%LbB) Zq eq(qs7" R qa)
On = %(ga”YuLba) Zq eq(qs7"' L qp)
Oz = %(ga”YuLbﬁ) Zq eq(qs7" L qa)

Remark: Strictly speaking, the electro-weak interaction only generates Og and Oq;. Oyp and
O12 only come into the game when switching on QC. An example of a diagram which
generates O1g and Oq5 is the following:

generates Oy, O1a.

Remark: Instead of a quark-pair (gg), one also could have a lepton-pair, as for example in
the process b — su™ ™.

In this case operators analogous to Og and O;; are generated, while operators analogous to
010 and Oq5 are not there. Why not?

! This is similar as in section 4.1: In absence of QCD one only had Os; Oy enters the game when switching
on QCD.
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5.1 Process b — sv

Which of the operators just discussed should be included in this case? Consider the matrix
elements of the various operators O;: (s7v|0;|b)

b 01702 S

~ G Fe
01,0, : c c ~
_— strength w.r.t
electro-weak
y

b

O3 — Og
O3 — O : ¢ c ~ Grpe
v
Y
Or:
b

O~

~ Gpe

S

o8



0s: m e

Note that the factor G comes from the prefactor in the effective Hamiltonian, not from the
operators.

b 09 - 012 S

~ GF~€26

_ . N N
Oy — O : ! ! q: quarks, [: charged lep-

tons

The contribution to the amplitude is suppressed by a = %7

As the operators Oy — Oj5 give suppressed (in «) contributions to b — s, one only takes
into account O; — Ox:

8
4
Heg(b— s7v) = —ﬁthVQZ Z Ci(1t)Oi(p);  p - Renormalization-scale (separation scale)
i=1

V2

01 = ga’yuL Cgéﬁ”y‘u[/ ba
Oy = 547, L cacpy" L bg
03 - 50/}/#[/ ba Z QBVML qs

q

Os =57, Lbs Y q57"Lga

q

Os = 57, Lba Y 457" Ry
q

29



06 - gof}/uL bﬁ Z (jﬁf}/uR o

q

O; = 166 5 (1) 360" RboFpy  Fpy : photonic field-strength
m

Og = %mb( (1) 500 RTffg b BGﬁV Gﬁy : gluonic field-strength
T

b — sy (full theory)

w

my <K my, my; M = my; ormy,

large logarithms: In 3¢

The large logarithms have to be resummed.
Proceed as in section 4.1, i.e.,

Ci(puw) at the matching scale p = pw (O(my, my))

RGE

Ci(up) at the lower scale u = py, (O(my))

The matrix elements (O;(1)) are calculated at the low scale f.

C;(pp) contains the large logarithms in resummed form.
In leading-logarithmic precision: [(ayIn ‘L—V:)N]

e Matching: C;(uw) in O(a?).

o
e Anomalous dimension matrix: 4 = 4—8&0 (8 x 8 matrix).
T
——

sufficient
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e Matrix elements: (sv]O;(u)|b)) in O(a?).

5.1.1 Matching at O(a?)

(1 is only induced at order «y; the same is true for C5 — Cj.

Ci(pw) = Cs(pw) = Ca(pw) = Cs(pw) = Cs(uw) =0,
Co(pw) =1.

We now want to determine C7(pup).

To do so, we calculate b — sy at order a? in the full theory and also in the effective theory,
at scale u = .

Effective theory:

At this scale only the coefficients of Os, O;, Og are different from zero.

b Cy0, s
The diagram is identically zero for an on-shell
photon (in d-dimensions).

~
9
b ésfm?% . is of order a! : too high!
Cs0s
5

Therfore: Only O; contributes in the effective theory at order a?. The corresponding diagram
is:
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C70r

Full theory:

s x: possible place for y-emission — 4 diagrams

The result for the amplitude A is of the form
A=V Vie f(my; mw) + Vo Vi f (me; mw ) + Vi Vi f (ma; mw) -
A would be zero for m,, = m, = my!

The 1/e-pole in f(my, my ) is independent of m,;. Due to the unitarity relation Vj,V;: +
Vi Vi 4+ Vi Vi, = 0 the result is finite. The function f has a well-defined limit when m; — 0.
To a very good approximation one can put m, = m. = 0. Doing the calculation in the full
theory and comparing it with the effective theory one finds:

2[62(32—2) In z2—(2—1)(822+52—7
Cr(pw) = [62( ) 24(2(_1)4)( + )l

Although not really needed for b — sv, what would be Cg(uw)?

Cs(puw) =? The calculation is very similar. Just consider b — sg instead of b — s7.

x: possible location for g-emission — 3 dia-
grams
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z[621n z4+(2—1)(22—52—2
| Cutpuw) = —emmree)

(In the effective theory only Og contributes.)

5.1.2 Anomalous Dimension matrix and RGE

The anomalous dimension matrix 4 can be expanded as

o Y0 4 (Psy20(1)
=0 ()T
We only need 4°, reading
-2 6 0 0 0 0 0 3
6 -2 -2/9 2/3 -2/9 2/3 | 416/81 70/27
0 0 -22/9 22/3 -4/9 4/3 |-464/81 545/27
S| 00 a4j9 43 10/9 10/3 | 136/81 51227
0 0 0 0 2 6 | 32/9  -59/3
0 0 -10/9 10/3 -10/9 -38/3 | -296/81 -703/27
0 0 0 0 0 0 32/3 0
00 0 0 0 0 | -32/9  28/3
2 loop
4(0) — -
1loop

Example for a 2-loop contribution: Contribution to 75(;), ie.,
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b O» 5
g
d = ~T = - .
M@C(M) =5"C(p) RGE for Wilson-coefficients.

Solve the RGE using é(MW) from the pages before as initial condition at p = py. Solving
the RGE leads to C'(up). For explicit expressions see literature, e.g. the review of Buras.

5.1.3 Matrix element (svy|Heg|b)

We now have to calculate the matrix elements (sv|C;(115)O;(115)|b) in order o2 precision:

e From the 4-Fermi-operators only O5 and Og contribute.

a)

i=5,6

Note: Cs(us), Co(p) # 0 (only Cs(puw) = Co(pw) = 0)

e From O7:
b)

64



C70r

It turns out that the results of the loops in a) have the same structure as the tree-level
diagram in b).

Can therefore easily summarize both categories a) and b):
eff 1
C7->C7 :C7—§C5—C(5.

The amplitude A then reads

4G
A(b — s7) = —ﬁwbwzcsﬂ<ub><sv|07|b>tree

Numerically we have for C¢I at the matching scale py = my: C(my) = —0.192. At the
low scale 1, we get (after using the RGE)

CT(10 GeV) = —0.268,
C(5 GeV) = —0.299,
C(2.5 GeV) = —0.334,

where p; is varied in the typical range 2.5 GeV < p;, < 10 GeV. We see that the dependence
on uy is large! In LL approximation the p;, dependence is only in the Wilson-coefficients.
This means that the amplitude suffers from a large scale (u;,) dependence at LL precision!

65



5.1.4 Result for BR(b — s7v) in various approximations

540 E
R 3E .
'L ]
A -
I N N
a1 F -
® T ]
m L i
O C 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 N
150 160 170 180 190
m, [GeV]

Figure taken from C. G., T. Hurth, D. Wyler, PRD54 (1996) 3350.

The figure shows the branching ratio for b — sy based on the leading logarithmic (LL)
precision. The upper (lower) solid curve is for pu, = my/2 (i, = 2my). The dotted curves
show the CLEO bounds.

Analytically, a term of the form ~ a(my) log ;,‘1—’; is responsible for the large scale dependence
of the branching ratio BR(b — s7) at LL precision. This term dies if one systematically
calculates the NLL contributions.

NLL-Calculation:

e Matching: C;(uw) to order ! precision.
e Anomalous dimensions: 4 = 2:4(0) 4 (22)25(1)
4 involves the evaluation of many 3-loop diagrams.

e Matrix elements (sv|O;(1)|b) are needed to order ! precision; they are responsible

for the cancellation of the term ~ a,(my)log £2!
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BR(B ——> X_ 7) * 104
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(@]

Figure taken from C. G., T. Hurth, D. Wyler, PRD54 (1996) 3350.

The figure shows the branching ratio for b — sy at next-to-leading logarithmic (NLL)
precision. The band defined by the solid curves corresponds to varying p, between m;/2 and
2my. The dotted curves show the 10-CLEO bounds.

In 2001, Gambino and Misiak realized that the NLL result has a large renormalization scheme
dependence related to m.:

NLL

t~
t~

m, enters the first time at the NLL-level, because at LL the diagrams involving m, are just
zero. m, enters the result at NLL precision. Its definition (m. = m. or m. = mP°®) is
unclear.

Numerically however, it makes a difference if one uses m. = m. or m, = m‘c"’le. At the level
of the BR this leads to an uncertainty of ~ 11%.

Remedy: Go to NNLL precision. In this case you have to renormalize m, in the NLL result;
as a consequence you have the renormalization scheme in your hands!

The NNLL calculation was started in 2001; many groups involved; very complicated:
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e up to three-loop diagrams for matching
e up to four-loops for certain entries in anomalous dimension matrix

e up to three-loop matrix elements of O;

NNLL still not completely finished, but the most important contributions are done.

BR(B — X,y)E = (3.3640.23) - 1077,

E\>1.6Gev

PRL-paper, M. Misiak, C. Greub, J. Virto 4+15 authors, 2015.

dr (B—X.y)
dE,

A

M g
E() ~ TB E’Y

Ey was chosen to be 1.6 GeV. For E below Ej there is large background.
BR(B — Xﬂ)?&l.mcv = (3.4340.2140.07)-10* CLEO + BABAR + BELLE averaged.
SM-theory and experiment in good agreement! This is “good” and “bad” at the same time!
good: We have a reliable theory also in the sector of rare B-decays.

bad: Rare decays are potentially very sensitive to extensions of the SM. Instead of top quarks
and W-bosons other, non-SM particles could propagate in the loop and modify the branching
ratio. = “Only” bounds on new physics can be obtained from this decay.

5.1.5 b— sy in 2HDMs

Not time enough to really do it. Just a few points.

The Higgs sector is enlarged to contain two Higgs-doublets. The physical spectrum contains
5 Higgses: hY, H°, A°, H+ K H~.

For b — s+ the operator basis is the same as in the SM.
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e The only change in the formalism is therefore the matching step:

LL NLL NNLL

NLL: Borzumati, C.Greub 1998
NNLL: Misiak et. al 2012

e Anomalous dimension matrix is the same; it only knows about the effective operators,
which are the same as in the SM.

e Matrix elements of O;: same comment.

This process leads to the most stringent constraint on my+ in the 2HDM of type II:
mp+ > 480 GeV @95% c.l..

type II: is a particular version of the 2HDM; it is the version which is contained in the MSSM
(minimal supersymmetric extension of the SM).

5.2 Process B — Xy in SM

B — Xy (B — Xgv)

Xg4: hadronic matter, no s, no c.
X,: hadronic matter with strangeness.

Underlying decay at quark-level:
b — dvy

b — dv is loop-induced, like b — s7.
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&= VaVia Se=VaVa & =VuVyu

Formalism similar as for b — sv. But one important difference:

The wu-contribution is not suppressed anymore:

(&l ~ &l ~ 1€l (b= dy) & = ViV
A~ Al > Al (0= s7) A = Vi Vig

This has an important consequence: b — dv has quite large CP, while C# is basically zero
in b — s7.

Let us look a bit at this aspect.

Ab = dy) = AL + EA+ EWAL; A; : loop-functions (5.2)

CP-conjugated process: b — dy

Ab = dy) = A+ EA A+ €A,
Note that only the CKM factors get complex conjugated.
If the CKM-matrix would be real, then A(b — dv) = A(b — dv) =no CP-violation.

In the SM with 2 generations, the CKM-matrix can always be made real by suitable field
redefinitions — no CF¥

In the SM with 3 generations this is not possible anymore. — CKM genuinely complex

— O7P. o
acp = (b = dy) - F(lz - 6%7) CP-rate asymmetry
I'(b— dvy)+T'(b— dy)

Suppose that only the first term is present in (5.2)).
Ab = dy) = §A; A(b— dy) = & A
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Amplitude is CP-violating, but does it lead to a, # 07

aCP ~ |§tAt|2 - |§:At|2
§e A2 + |65 Ay|?

= (0 — no "visible" OF.

More than one contribution needed!

Two contributions:

acp ~ €A + E AL — 67 A+ EX AL
§eAr + EcA® + |§F AL+ EE AL
op ~ 2Re (& AvAY) — 2Re(§EAAY)
& A + E A + | A+ A2
top ~ —4Im(&E) Im(ALAL)
|§eAs + EAN? + |§F A + E A

acp # 0 only if:

o A, A, different (strong) phases

o &, &, different (weak) phases

&, & have different phases:
&+Eé+E&=0

Eu &

0 £,

acp potentially large

b — s7v: The same formalism, just replace & — \;:

AM+A+ A =0
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Aty Ae, Ay are almost relatively real — acp =~ 0.

Again b — dv: To have observable acp, we also need Im(A;A%) # 0; i.e. a (strong) phase
difference between A; and A, is necessary.

Ay, Ae, A, denote just the diagrams without the CKM factors.

w

Ay : no physical cut — A; real.

Ay no cut if v is on-shell — A, . real.

no (strong) phase difference! — acp = 0.

Remark: An off-shell photon with ¢* > 4m? would provide a phase (b — dI*17).

Switch on QCD:

w cut!

Has a cut and hence an imaginary part.
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no cut — real.

= A; and A, have a relative (strong) phase, but only in presence of QCD.

acp(b — d”)/) 7A 0
acp(b — dvy) = (7% — 35%) (should be updated)

The last result is obtained by scanning over the CKM-range as of 1998 (Ali+C.Greub).
Today, the allowed CKM-range is much smaller than in 1998, therefore an update should be
done.

73



	Introduction
	B Physics experiments
	B-Mesons produced in e+e- collisions
	B-Mesons produced in hadron collisions

	Decay modes of b-quarks; terminology

	Standard Model briefly summarized
	Gauge group
	Fundamental fermions
	Electro-weak Interaction
	Part LG
	Part LfG
	Part L
	Part LYuk
	Masses of gauge bosons (W,Z-bosons)
	LfG expressed in terms of W,Z0,A
	Fermion-Mass terms and the CKM Matrix
	Parameters in CKM Matrix V
	Parametrizations of the CKM Matrix V
	Measuring some of the CKM elements


	Inclusive semileptonic B-decays
	General comments on inclusive decays
	(bc  e  ) and (bu  e  ) at lowest order
	QCD Corrections to b c  e  e, b  u  e  e
	Virtual gluon corrections
	Bremsstrahlung process bce+g
	Semipleptonic decay width in O(s) QCD


	Effective Hamiltonian for b c    d
	Tree-level
	QCD-effects; principle comments
	Matching of Heff for bcd at O(s)
	A different look at operator renormalization
	Renormalization-group equations
	Running coupling gs()
	Running masses
	Renormalization group equation for C1(),C2()

	Summary

	Effective Hamiltonian for B=S=1 transitions
	Process bs
	Matching at O(s0)
	Anomalous Dimension matrix and RGE
	Matrix element "426830A s|Heff|b"526930B 
	Result for BR(b s ) in various approximations
	bs in 2HDMs

	Process BXd in SM


